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Abstract: In this paper we propose an information structure enrichment of 

relational models underlying design structure models typically used in System-of-

Systems. Such design structures are algebraically, logically and topologically 

mostly unstructured relations as treated within naïve set theory. The paper also aims 

to show how an enriched information structure can be applied to monitor the health 

status of a System-of-System as an alternative to fault trees. 
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1 Introduction 

System-of-Systems embrace several intertwined subsystems and even several interrelated 

subsystem models involving humans and machines, physics and economics, evaluations 

and predictions, and many more aspects, all having specific modelling requirements. 

Systems are designed and manufactured, operated and maintained, and eventually 

replaced. From a system point of view, and while operational, the lifespan of a subsystem 

involves condition monitoring, identification of changes, and various aspects and 

phenomena that needs to be quantified and qualified, often in stochastic and many-valued 

settings. Monitoring of operations often involves identifying or preventing defect, as a 

matter of diagnostics. On the other hand, system functioning is important to maintain at 

required levels, or restored after shutdown or breakdown. Service and maintenance 

therefore has to focus both diagnostics as well as functioning. 

As an example, any system that includes running mechanical components is affected by 

wear. In many cases, there are predictive models describing the effects of this wear over 

time and these models are the base for maintenance schedules. In some cases the actual 

wear of individual components will deviate from the predictive model and in these cases 

it is useful to have a system that may detect this deviation. Many systems are equipped 

with different kinds of sensors. In a system-of-systems there may be a number of 

predictive models that may or may not be similar in kind. There might be models for 

mechanical wear, models for fluids, air filters etc. Each will contribute to a general 

representation of the current projected status of a system-of-systems. Many systems are 

equipped with different kinds of sensors that may be used to detect deviations from the 

predicted models, to complement the models and to give a better general representation 

of the system status and not to forget they may be used to make new and better prediction 

models for maintenance of system and system-of-systems. This means that there is a need 

to be able to handle sets of data from different models that all aims to express various 

forms of states, but that are not necessarily using the same terminology. The way in 
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which they differ might be expressed as a distance or rather nearness, since they are 

related in some way. Since a system or a system-of-systems by necessity is contributed 

by more than one individual part there will most likely be individual aspects that needs to 

be addressed that may or may not have a high level of nearness from a topological point 

of view.  

To explain this we start with one of the simplest mechanical systems possible. Two gears 

who’s cogs are linking in to each other. They have the exact same amount of cogs, i.e. a 

1:1 ratio and are suspended in mid air without any bearings or axels. In this case any 

observation or prediction model for any of the two gears would be highly identical with 

the other. Since each cog would touch another cog the same amount of times the wear 

would be very similar regardless of which gear is chosen for observation or model. The 

nearness between the sets of terms created would be very close. Anything made to 

increase the complexity of this simple system will introduce differences between 

observations made, even if we use the same basic model.  Say that we change the ratios 

between the gears to 2:1. This would mean that each individual cog on one gear will 

touch a cog on the other gear twice as often during a finite amount of time. This would 

mean that even if it would be quite possible to use the same basic model to predict the 

wear of each wheel, we also will have to make and introduce a new model that handles 

the combined wear of both gears since the increased wear on one gear in fact may affect 

the other gear as a consequence. In this case it is easy to see the relation, or nearness in 

the cause and effect between the components regardless of how it is expressed since it is 

a very small system. If this is scaled up in to a system-of-systems the importance of the 

use of nearness as a way to express relation is far more important. Since a system-of-

systems with high probability will be made using components of different makes and 

vendors using different kinds of standardizations or even vendor specific notations for 

diagnostics. There will be a need to express how closely related seemingly different 

values or terms are. Both to draw conclusions about the current status of a system-of-

systems but also to identify unobvious relations that may enable better conclusions about 

the overall state of a system-of-systems. 

Most mechanical devices, regardless of the existence of electrical components, can be 

viewed as a singular system or a system-of -systems. A gearbox may be seen either as a 

system for changing gear ratios, as a part of a transmission system, as a part of a drive 

system or similar. Even if the gearbox is viewed as a singular system it may still be 

possible to divide it into a functional part, the gears, and an enabling part, the bearings, 

and if present even to a controlling part, a gear selector. Loss of function in any 

individual subsystem will probably reduce the overall function of the gearbox, but not 

necessarily make it inoperable. Should the gearbox be viewed as part of a transmission 

system the problem becomes more complex making the need for a more sophisticated 

logic for accurate diagnostic. Damages to peripheral parts of the transmission system 

might increase the wear on individual gears making their predicted wear inaccurate. In 

respect, problems originating in the gearbox might lead to increased wear on things like 

bearings and motors but not necessarily stop the system ability to operate as a whole. In 

other words, the system or system of systems experiences a loss of function and needs a 

correct diagnosis to determine a correct cause of action, but the system has not stopped 

working. 
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If there was to be an analogy with the human body, a machine would not only be 

considered either operational or non-operational, it would be considered as either healthy 

or affected by different levels of function loss. A person suffering from a arthritis in a 

thumb joint would not be considered non-operational. That person might even be 

considered quite healthy over-all. The idea is that the amount of wear on a mechanical 

subsystem, or even a fully mechanical system, cannot be represented by either a 0 (false) 

or 1 (true), or possibly even a scale e.g. from one to five. Our point in this paper is then 

also that this is not just a numerical scale, but comes with algebraic structures. It needs to 

be translated into a much more sophisticated representation to fully represent the 

complexity of the problem. A classical logical fault-tree consisting of either true or false 

as possible states of being are not accurate enough even for a small system. A system or 

system-of-system that could come in question for scrutiny of its dependencies and 

structures must be equal to a process. There would be little need to perform such task on 

a static object. In order to sufficiently translate the overall health state of a system or a 

system-of-system we need to use generalized relations and logical models that allows for 

order and many-valuedness. This means that the classical fault tree, that uses 0 and 1 to 

represent operational or non-operational states is replaced by something that is containing 

enriched information, perhaps in the form of truth values between 𝑏𝑜𝑡 (bottommost truth 

value) and 𝑡𝑜𝑝 (topmost truth value), enabling representation of the operational degree of 

any given system. 

One fundamental aspect of applying any form of algebraic, logic or topological operation 

on a system of even moderate complexity is to have the means of understanding a real-

life-system with its interactions, both internal and external, and to have a tool capable of 

making a logically coherent visualization of this system. There are a number of 

established notations available that are more or less widely used to translate different 

kinds of processes in to structured and ordered representations, or models, of the original. 

The more complex the system and the more intricate the system-of-system, the higher is 

the need to find a notation with a rich underlying logic. This is important to allow for 

design structures to keep relations between the components and data and allow for 

maintaining both order, many-valuedness and topology. 

2 Unstructured and structured information 

The simplest form of information is a set 𝑋 of points 𝑥𝜖𝑋. If 𝑋 is given no structure, and 

the points 𝑥 remain unexplained, no mathematics, apart from set theory, can be applied to 

analyze such ‘information’. 

Intuitively, we may e.g. say that 𝑋𝐶𝑜 is a ‘set of components’ and 𝑥𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡 is a 

‘component’ in 𝑋𝐶𝑜, i.e., 𝑥𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡𝜖𝑋𝐶𝑜. It is then tempting to say that this is more 

informative than saying 𝑥𝜖𝑋, but in fact, mathematics at this point is blind to see any 

difference between 𝑥𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡𝜖𝑋𝐶 and 𝑥𝜖𝑋, since 𝑥𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡 is mathematically still just 

an element and 𝑋𝐶𝑜 is just a set. 

The DSM model (Eppinger and Browning, 2012) is a typical relational model, which 

informally may define information types, and in the case of DSM roughly divide these 

types into components, people and activities. Respective types are equipped with 
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underlying and unstructured sets of elements of these types, so that we may add sets 𝑋𝐶𝑜, 

𝑋𝑃𝑒 and 𝑋𝐴𝑐, respectively, of elements representing components, people and activities. 

However, elements in these sets indeed remain simply as names. Algebraically, logically 

and topologically we still have very little structure, if any structure at all, except for the 

possibility to create free algebras, logical signatures with only constants, or trivial 

topologies. 

A typical step and starting point to add structure is to say that “points can be related”. We 

may want to describe how components are related or maybe how components and people 

are related, and so on. This means we establish relations as subsets 

𝑅𝐶𝑜𝐶𝑜 ⊆ 𝑋𝐶𝑜 × 𝑋𝐶𝑜 

and 

𝑅𝐶𝑜𝑃𝑒 ⊆ 𝑋𝐶𝑜 × 𝑋𝑃𝑒. 

We may want to impose various properties on relations, like those for reflexivity, 

symmetry and transitivity, providing equivalence relations. Such relations divide the set 

of elements into a set of non-overlapping subsets. Conversely, for any subdivision of a set 

into a set of non-overlapping subsets we can define a unique equivalence relation that 

provides that subdivision. Respective subsets are then per se unrelated. 

The symmetry property essentially means that the relation is unordered, so that 

asymmetry means that order makes sense. The relation is then more conveniently treated 

as an order relation, and therefore appears within the realm of lattices and algebras. 

Note also how a relation 𝑅 ⊆ 𝑋 × 𝑋 can be equivalently represented as the mapping 

𝜌 ∶ 𝑋 × 𝑋 → 2 

where 2 denotes the two-pointed set {0,1} (𝑜𝑟 {𝑓𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒}). The relation has initially 

no properties, so it may e.g. be asymmetric indicating that the order between components 

is important. However, order as a structure is not explicitly recognized within the formal 

notation, and in fact, in the case of DSM, the model comes with very little formal 

notation. 

In design structures, order and many-valuedness are important, but in logic it is an 

interesting question whether order precedes many-valuedness. If we first extend 2 to 𝑄, a 

non-commutative quantale, we have a many-valued relation 

𝜌: 𝑋 × 𝑋 → 𝑄 

and non-commutativity of the quantale means that aggregations will consider the order 

among elements in 𝑄, see e.g. (Eklund, Gutiérrez García, Höhle and Kortelainen, 2018). 

DSM also deals with many-valuedness, but in a rather pragmatic way, and not using 

algebraic notions or logical formalism to describe it more precisely.  

This is clearly seen e.g. in DSM’s four types of interactions (spatial, energy, information, 

and materials), with a 5-scale (-2 … 2) characterizing many-valuedness for each 

interaction. That 5-scale can be viewed as a quantale, but the relation between respective 

5-scales is not algebraically explained in DSM. 

Many-valuedness and order is thus poorly explained in DSM, and for the set 𝑋 must also 

have a more elaborate structure, otherwise the size of that unstructured set quickly grows 

to become very large, and application development makes no practical sense. As we 

indicated before, 𝑋 cannot be just a set of elements. It has to be a structure of elements. 
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As an example, if we only say ‘crankshaft’ as a name for a component in an automotive 

system-of-systems, ‘crankshaft’ is just a logical constant, but if we include the attributes 

𝑎𝑡𝑡𝑟1, … , 𝑎𝑡𝑡𝑟𝑛 attached to a crankshaft it becomes a logical term. Using logical notation, 

𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡 is a logical constant (of zero arity), whereas 𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡(𝑎𝑡𝑡𝑟1, … , 𝑎𝑡𝑡𝑟𝑛) 

is a term, with 𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡 ∶  𝑠1 × … × 𝑠𝑛 → 𝑠 being an operator (of arity 𝑛) and 𝑠𝑖, 𝑖 =
1, … , 𝑛, and 𝑠 are types (sorts). 

In first order logic, 𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡(𝑎𝑡𝑡𝑟1, … , 𝑎𝑡𝑡𝑟𝑛) may be viewed as a term or a predicate. 

In (Eklund, Höhle and Kortelainen, 2014) terms are clearly separated from sentences, so 

that 𝑐𝑟𝑎𝑛𝑘𝑠ℎ𝑎𝑓𝑡(𝑎𝑡𝑡𝑟1, … , 𝑎𝑡𝑡𝑟𝑛) is an expression (term) rather than a statement or 

predicate (sentence). Conglomerates of sentences become part of the logical theory 

related with the design structure. 

In the simplest case, components are terms, built upon a signature Σ = (𝑆, Ω), where 𝑆 is 

the set of types and Ω is the set of operators. The set of all terms (expressions) is then 

𝑇Σ𝑋, where 𝑋 is a set of variables. The design structure is then 

𝜌 ∶ 𝑇Σ𝑋 × 𝑇Σ𝑋 → 𝑄 

where order and many-valuedness reside in both components and the valuation of the 

relation between them. In this situation, 𝑇 is a functor over the category of sets, so that 

order and many-valuedness reside in the functor structure. However, as explained in 

(Eklund, Galán, Helgesson and Kortelainen, 2014), 𝑇 can more generally be an 

endofunctor over any monoidal biclosed category, so that order and uncertainty is 

modeled in the underlying category (metalanguage) rather than in the functor itself.  

Further, the relation 𝜌 may be constrained by properties, such as associativity. 

Applications typically define these properties, as well as the nature of order and many-

valuedness. 

We can enrich 𝜌 even further, and this makes us realize how DSM without structure is 

capable of producing applications on a very general level only.  

3 Contact relations 

People, and people in teams, are obviously differently structured as compared to 

components and subsystems of components. Relations between and (topological) 

nearness of people and teams require to be modelled also involving topological notions 

like neighbourhood, entourage, proximity and nearness. Neighbourhoods of points in 

topological models originate and abstracts from geometry and metric space models. 

Entourages in uniform spaces (Weil, 1937) and can intuitively be viewed as two-

dimensional or “relational” neighbourhoods. Nearness (Herrlich, 1974) extends 

proximities (Riesz, 1909), where these models consider proximity of sets rather than 

points. This brings proximity consideration closer to the notion of contact relations. 

The mathematical notion of contact has its origin in the so called point-free approach to 

topology. In recent years, point-free descriptions, i.e., region-based theories of space, in 

particular, have been a prominent area of research. Traditionally, space has been 

considered in mathematics by point-based theories such as geometric (e.g. Euclidean 

geometry) or topological representations (point-set topology) of space. Representing a 
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region by the set of its points might be impossible or at least very inefficient when it 

comes to computer applications. As an alternative point-free theories of space such as 

region-based theories can be used to represent space in the context of qualitative spatial 

reasoning. Using regions instead of points as basic entities accounts more naturally for 

how humans conceptualize the physical world. For this reason this alternative 

representation of spatial entities and their relationships has become a prominent area of 

research within AI and Knowledge Representation. Since the earliest work of de Laguna 

(deLaguna, 1922) and Whitehead (Whitehead, 1929), mereotopology has been considered 

for building point-free theories of space. Mereotopology is a combination of the 

topological notion of connectedness with the mereological notion of parthood. A 

common mereological approach is to use Boolean algebras modeling the parthood 

relationship of regions. A Boolean algebra is a set B with two binary operations ∧,∨, a 

unary operation * and two constants 0,1 so that the following axioms are satisfied: 

a ∨ (b ∨ c) = (a ∨ b) ∨ c a ∧ (b ∧ c) = (a ∧ b) ∧ c associativity 

a ∨ b = b ∨ a a ∧ b = b ∧ a commutativity 

a ∨ (a ∧ b) = a a ∧ (a ∨ b) = a absorption 

a ∨ 0 = a a ∧ 1 = a identity 

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)  a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)  distributivity 

a ∨ a* = 1 a ∧ a* = 0 complements 

 

With 𝑎 ≤ 𝑏 iff 𝑎 ∧  𝑏 =  𝑎 the induced order on B is defined that immediately 

generalizes the inclusion of set of points to the abstract elements of the Boolean algebra. 

A so-called contact relation is often used to model the topological aspect of regions of 

being in contact. Formally, a contact relation 𝐶 ⊆ 𝐵 × 𝐵 is a binary relation on B. Most 

commonly, the following axioms for 𝐶 are considered: 

𝐶0 (0𝐶𝑎) null disconnectedness 

𝐶1 𝑎 ≠ 0 → 𝑎𝐶𝑎 reflexivity 

𝐶2 𝑎𝐶𝑏 → 𝑏𝐶𝑎 symmetry 

𝐶3 𝑎𝐶𝑏 and 𝑎 ≤ 𝑐 → 𝑎𝐶𝑐 compatibility 

𝐶4 𝑎𝐶(𝑏 ∨ 𝑐) → 𝑎𝐶𝑏 or 𝑎𝐶𝑏 summation axiom 

𝐶5 𝐶(𝑎) = 𝐶(𝑏) → 𝑎 = 𝑏 extensionality 

𝐶6 𝑎𝐶𝑐 or 𝑏𝐶𝑐∗ → 𝑎𝐶𝑏 interpolation axiom 

𝐶7 𝑎 ≠ 0 and 𝑎 ≠ 1 → 𝑎𝐶𝑎∗ connection axiom 
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The first axiom says that no region is in contact with the empty region and  
𝐶1 requires that every non-empty region is in contact to itself. The symmetry axiom 

makes contact a symmetric relation. This axiom makes perfectly sense in the spatial 

interpretation. However, if we consider parts of an engine or a system and interpret 

contact to model the potential influence of a mail function in one part on the other part, 

this axiom might not be suitable. 𝐶3 relates the order structure, i.e., the mereological 

notion, to the notion of contact. The summation axiom states that if a component a is in 

contact to a component that consists of two parts, then a must be in contact to at least one 

of the parts. The extensionality property ties the mereological notion to contact. It 

requires that if to components are contact to the same set of parts, then they are equal. As 

a consequence the order relation becomes definable in terms of 𝐶. The interpolation 

axiom is an axiom that stems from contact relations obtained by proximity spaces. It is a 

separation property requiring that two disconnected regions, i.e., two regions that are not 

in contact, there is a third region disconnected from the first including the second as non-

tangential part. Finally, 𝐶7 requires that every non-trivial region is connected to its 

complement.  

Please note that Boolean contact algebras, i.e., Boolean algebras together with a contact 

relation satisfying 𝐶1 − 𝐶4, can be represented in topological spaces with the usual 

definition of contact. In this context the additional axiom correspond to certain properties 

of the topological space. 

4 The Information & Process view of relational structures 

In order to translate real world systems into some equivalent representation that can be 

manipulated and interpreted, some kind of transitional layer is needed. Careful use of 

BPMN or DMN to capture a real-world process may both preserve and reveal relations 

between active components in a logically consistent way. Tools like BPMN can be used 

to make representations of many things and system of systems are just one example 

outside the business world. Since BPMN and its siblings allows for dependencies like 

directional flows and relations the addition of weights and values makes them well suited 

to apply logic to allow for better ways to understand the inner workings of any system of 

systems, they do however have limitations. 

In (Eklund, Johansson, Kortelainen and Salminen, 2017) the logically extended view of 

DSM was promoted with respect to design structure becoming potentially supported by 

information and process standards as appearing in the OMG (Object Management 

Group) family of languages and notations, including  

‑  UML (Unified Modeling Language) 

‑  SysML (Systems Modeling language) 

‑  BPMN (Business Process Modeling Notation) 

‑  CMMN (Case Management Model and Notation) 

‑  DMN (Decision Model and Notation) 

UML’s Structure Diagram is a database model, whereas the Behaviour Diagram in UML 

is less recognized and used. The Behaviour Diagram in fact is a process model. Further, 

UML’s Behaviour Diagram is part of SysML, which is a process model expanding the 
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process model side of UML. SysML is intended e.g. to support systems-of-systems 

modeling in engineering and manufacturing. BPMN in OMG should not be confused 

with value chain models, and and the logic of DMN is basically a propositional logic on a 

very trivial and basic level. Systems-of-Systems indeed embrace UML, SysML, BPMN, 

CMMN and DMN, in a variety of combinations. 
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