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Abstract: Estimating task execution time is essential for planning and managing 

engineering projects. Many process scheduling and optimisation tools and methods 

require precise task execution time estimates. However, estimates are often too 

optimistic, potentially harming the usefulness of such tools. In this paper, we 

develop a methodology to aggregate multiple data sources into a Multiple Domain 

Matrix and show that its structural properties correlate with task execution time. 

Specifically, using data from a real-world engineering case, we show that the size of 

a task, the number of people assigned to it, and the number of interfaces directly 

correlate with task execution time. We discuss how these measures are available 

during the planning stage of the process and how people can use them to obtain 

better estimates. 

Keywords: multilayer networks, MDM, task execution time estimation, design 
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1 Introduction 

In late 2005, the Hamburg Parliament decided to start the construction of a new concert 

hall in the centre of the city – the “Elbphilharmonie”. Several independent consulting 

companies estimated € 186.7 million in line with a feasibility study for the completion of 

this ambitious construction project. The targeted opening date was the 30th March 2010 

(Parliament of the Free and Hanseatic City of Hamburg, 2014). By the 4th of November 

2016, the building was officially finished – a delay of more than six years with a budget 

overrun of more than € 679 million. The “Elbphilharmonie” is just one example of 

project mismanagement and exemplifies the potentially catastrophic consequences of 

unrealistic and undersized estimations of budget and time. Good time estimates are 

crucial to project success (Murmann, 1994; Thamhain and Wilemon, 1986) and many 

tools have been developed in the attempt to support experts in their estimates and project 

planning (Bashir and Thomson, 2001; O’Donovan et al., 2005). 

Why do experts underestimate project completion time? Humans have a tendency to 

underestimate the difficulties of the tasks for which they are providing estimations 

(Flyvbjerg, 2006; Kahneman and Lovallo, 1993). In addition, the tasks to estimate are 

often considered in isolation without a systemic understanding of the whole (Kahneman 

and Lovallo, 1993). For this reason, calls to action for using historical data to correct 

and/or inform time estimations have been made (Flyvbjerg, 2006; Halkjelsvik and 

Jørgensen, 2018).  
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In this paper, leveraging the intersection between engineering design and network 

science, we combine three different data sources from a large-scale design project of a 

biomass power plant in order to understand task completion time in relation to the project 

structure. We show that task completion time correlates positively with the number of 

documents produced within the scope of a task, the number of tasks to which a task is 

connected, and the number of people assigned to it. Our results are in line with previous 

research and show that the analysis of historical or archival data can generate a useful 

understanding of factors that can affect a project. We discuss how such an approach can 

offer a more global view and support project planners in estimating task completion time. 

After a brief overview of the background and related literature (section 2), we introduce 

the datasets and the analysis methods (section 3). We report the results (section 4) and 

discuss their implications, connections with extant literature, and avenues for future 

research (sections 5 and 6).   

2 Background 

Estimating project completion time is a crucial task in the life of a project. Time 

estimates are important not only for financial reasons such as to present the project to 

possible investors, time estimates are an input variable of many project management 

tools. Project scheduling techniques such as the Process Evaluation and Review 

Technique (PERT) and the Critical-Path Method (CPM) (Project Management Institute, 

2017) or techniques based on Design Structure Matrices (DSM) (Eppinger and Browning, 

2012) require entering completion time for each task. As a result, errors in the estimations 

of tasks completion time can seriously harm the subsequent project planning and 

management.  

Despite the models developed (for instance, Bashir and Thomson, 2001; Srinivasan and 

Fisher, 1995), expert estimation seems to be the most common way to estimate effort and 

completion time (Halkjelsvik and Jørgensen, 2018; Project Management Institute, 2017). 

On the one hand, expert estimation has its advantages, as experts may have important 

domain knowledge that the model does not include (Jørgensen, 2004). On the other hand, 

expert estimations are inherently prone to human and situational biases (Jørgensen, 2004; 

Kahneman and Lovallo, 1993) that make them too optimistic. This optimism bias 

happens as experts tend to consider problems as unique, not accounting for similar cases. 

That is, expert estimations rely on the “inside” view, which only takes the structure and 

the impediments of the specific case into account. An “outside” view, on the other hand, 

takes distributional information of similar cases into account (Kahneman and Lovallo, 

1993). 

Studies that investigate what factors relate to execution time offer useful insights to take a 

more “outside” view to time estimates. Lanigan, (1994) showed that task effort is a 

function of the nature of the task itself and the number of people working on it. 

Kakimoto et al., (2018) showed that maximum team size to estimate effort of a project is 

effective and robust to perturbations when the error rate is equal or less than 50%. In 

software engineering, different studies relate the size of software, captured by number of 

lines of code, function points, or number of files, to the execution time or development 

effort (Albrecht and Gaffney, 1983; Boehm, 1984; Symons, 1991).  
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In this paper, we connect the previous insights with the domain of Engineering Design, 

testing the overall hypothesis that task execution time can be predicted, to some extent, 

from the properties of the networked structure of the project. 

 
Figure 1: Process of data extraction and combination to build the Multiple Domain Matrix (MDM) 

used to understand task execution time in relation to project structure. 

3 Data and Methods 

3.1 Data 

The data used in this paper refers to a large-scale design project of a biomass power plant 

conducted by a multi-project Scandinavian company (Parraguez et al., 2015). Three 

different data sources are available: 

- An activity log, which records the activities performed by the company’s personnel 

throughout the duration of the design process. The activity log describes the relations 

between 100+ people and ~150 unique activities. Each activity is identified by an 

activity code assigned by the software that the company uses to manage the project. 

- A document log, which contains metadata for the 3000+ documents created during 

the design process. The metadata include information about document creation and 

last modification dates, external companies involved in the document editing process, 

and the code of the activity to which each document is related.  

- The complete email exchange between all the people involved in the project 

(employees, suppliers, external consultants, etc.). The complete email archive 

amounts to ~54000 emails. 
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3.2 Methodology to build the MDM automatically from data sources 

In order to understand a design project in relation to its multilayer network structure, we 

need to extract the fundamental networks (matrices) from the data sources, in a way that 

makes them combinable into one Multiple Domain Matrix (MDM) (Figure 1). From the 

document log, we extract a matrix that maps each document to the activity it refers to. 

From the activity log, we extract a series of monthly bipartite networks, also known as 

Domain Mapping Matrices (DMM), that represent the assignment of people to activities, 

connecting each person to the activities performed in one month. Similarly, from the 

email archive, we extract a series of directed networks that connect the company’s 

employees based on the monthly email conversation. As the design process under 

analysis is closer to a Systems Engineering process rather than an agile one, monthly 

aggregation is appropriate. We tried other more refined aggregations, such as weekly, but 

the results remained unchanged. 

The activity network that describes the information dependencies between the activities 

that compose the process is obtained by applying relational algebra for networks. Let PAt 

be the matrix describing the assignment of people to activities at time t, and PPt the 

communication between people, as captured by the email communication, at time t, the 

activity network at time t is computed with the following formula: AAt = PAt
T · PPt · PAt. 

The final activity network for the MDM is computed by aggregating (summation) all the 

snapshots AAt into a single one. The matrices extracted as described above are then 

aggregated and combined to form the MDM (Figure 1). Considering the evolution over 

time for PP and PA is important to avoid an unrealistic process DSM that is too dense, 

where each activity may be connected to nearly any other (Figure 2). 

 
Figure 2: Comparison between the process Design Structure Matrix (DSM) obtained by 

aggregating all the temporal information into one single snapshot (A) and by using monthly 

snapshots (B).  

3.3 Modelling 

In this paper, we focus on understanding task completion time in relation to the 

multilayer structure of the project. Guided by the insights discussed in the literature 

review and in accordance with our hypothesis that structural properties of the project can 

predict, to a certain extent, completion time, we extract the variables of interest from the 

MDM. 

A B
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As the completion time for the tasks is expressed in number of days, thus is a positive 

integer, we use models of the following form: 

log(yi) ~ α + βXi  (1) 

Where yi is the completion time for the i-th activity, α is a constant term, Xi is the vector 

of explanatory variables, and β its relative vector of coefficients. To fit the model we use 

the ordinary least squares method (OLS) with robust standard errors to account for 

possible heteroscedasticity. The logarithm transformation of the completion time is useful 

to reduce the skewness of the distribution. To evaluate the goodness of the models we use 

the following measures: the R2, the adjusted R2, the Akaike Information Criterion (AIC), 

the Bayesian Information Criterion (BIC), and the root mean square error (RMSE). For R2 

and adjusted R2, the higher the better; for the other measures, the lower the better. 

Finally, to check for multicollinearity, we computed the condition number and the 

variance inflation factors (VIFs). In the following, we describe and discuss the variables 

that we use in our modelling approach to explain task completion times. The dependent 

variable, i.e. the variable that we seek to explain using structural properties of the MDM, 

is the activity execution time. We use activity and document logs to compute the 

completion time for each activity. As the activity log has data on a daily granularity, we 

count the number of days elapsed between the first and last time a person worked on an 

activity or a document connected to it. To account for the size of each activity, we 

compute the number of documents connected to it (#Documents). In the MDM, this 

corresponds to the degree of the activities in the DMM activity-document (see Figure 1). 

As each document deals with a set of functional requirements, the number of documents 

can be interpreted as an approximate measure of the functional requirements of an 

activity. Furthermore, the number of documents can give a first estimate of the workload 

of the teams involved (Piccolo et al., 2017). We expect a positive relation between the 

number of documents and completion time. 

For each activity, we compute the number of people (#People) allocated to it as the 

degree of the activities in the DMM activity-people (see Figure 1). This DMM proved to 

be highly relevant to understand the role of people in the robustness of a design process 

(Piccolo et al., 2018). The number of people connected to an activity can be interpreted as 

an approximation of the workforce needed by the activity. In addition, activities with 

high number of people assigned to them can be more error prone (Piccolo et al., 2018); 

thus, we expect a positive relation between the number of people connected to an activity 

and its completion time. 

We account for the structure of the activity network and the amount of information 

dependencies affecting each activity by computing a set of measures: 1) the degree of 

each activity (#Activities), i.e. the number of ingoing and outgoing edges; 2) the 

indegree, i.e. the number of ingoing edges and quantifies the dependency of an activity 

from the preceding ones; 3) the outdegree, i.e. the number of outgoing edges and 

quantifies the influence of an activity on the following ones; 4) the product of indegree 

and outdegree, here termed criticality, which accounts for a synergistic relation between 

in- and outdegree. We expect a positive relation between these structural properties and 

the completion time.  

Finally, we compute the number of external companies involved in each activity as a 

possible confounder for the measures computed above. The rationale for including this 
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confounder is that a higher number of external companies involved in an activity could 

produce more difficulties in coordination and thus, increase overall completion time.  

All variables, before the statistical modelling, were normalised by removing their 

averages and dividing them by their standard deviations. Table 1 shows the correlation 

between the explanatory variables. We note that the correlation between degree, indegree, 

outdegree, and criticality is very high (almost perfect correlation). Thus, we present only 

the models with #Activities, without the other correlated variables to avoid 

inconsistencies due to multicollinearity. Interpretation for the other variables is the same 

as for the degree.  

Table 1. Correlations between explanatory variables. High correlations (r ≥ 0.7) highlighted. 

 

 

 

 

 

 

4 Results 

We present the results of our analysis in Table 2. First, we develop a baseline model that 

accounts only for the effect of the number of documents, the number of people, the 

number of activities, and the number of external companies involved. All the terms are 

positive and significant, with the exception of the number of people and the amount of 

companies. We develop a second model to account for the possibility of non-linearity in 

the number of people and the activities’ degree. The complete model represents an 

improvement over the baseline with an increase of ~25% for the explained variance (R2 

and Adjusted R2). The coefficients confirm the expectations of positive relations between 

the number of people, documents, activities, and completion time. 

The number of people and activities are associated non-linearly and monotonically with 

completion time (see Figure 3 for a visualisation of the relations). Finally, observing that 

the number of external companies is not significant, we remove it obtaining a reduced 

model that has the same explanatory power as the previous one. The coefficients remain 

significant, describing the same positive associations of the variables with the completion 

time. Our models do not suffer of multicollinearity, as confirmed by the Variance 

Inflation Factors (VIFs) and condition numbers smaller than 10. 

 

 

 

 
 2 3 4 5 6 7 

1. # Documents  0.45 0.38 0.37 0.35 0.39 0.4 

2. # People  
 

0.36 0.7 0.7 0.71 0.78 

3. # Companies    0.42 0.45 0.41 0.47 

4. # Activities     0.98 0.98 0.95 

5. Indegree      0.95 0.96 

6. Outdegree       0.96 

7. Criticality        
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Table 2. Regression table. Dependent variable: execution time 

  

 
Figure 3: Relations between task execution time and #Documents, #People, and #Activities. The 

negative numbers are due to variable standardisation. 

5 Discussion 

Estimating task execution time is an important activity for planning and managing 

engineering projects, as many scheduling tools require task completion time estimates as 

one input variable. However, time estimates are often too optimistic because of cognitive 

biases that prevent experts to realise and consider the many factors influencing task 

execution. Here, we proposed to understand execution time in relation to the multilayer 

structure of a project through the use of a Multiple Domain Matrix (MDM). Differently 

from traditional approaches that rely on interviews, we developed a method to build the 

MDM automatically from three data sources: email communications, activity logs, and 

document logs. 

A B C

Coefficients Baseline Complete Reduced 

Constant 5.49*** (0.13) 6.10***  (0.19) 6.12***  (0.19) 

log(#Documents) 0.56*** (0.14) 0.60***  (0.14) 0.54***  (0.13) 

#People 0.14     (0.13) 1.02***  (0.25) 1.02***  (0.25) 

#People²   -0.38***  (0.10)  -0.37***  (0.10) 

#Activities 1.00*** (0.20) 0.36      (0.25) 0.31      (0.24) 

#Activities²   -0.24*     (0.11)  -0.26*     (0.11) 

#Companies  -0.16     (0.10)  -0.15      (0.09)  

R² 0.43 0.52 0.52 

Adjusted R2 0.41 0.50 0.50 

AIC 493.85 474.36 473.40 

BIC 508.19 494.43 490.60 

RMSE 7.72 6.95 7.59 

#Observations 130 130 130 

*** p < 0.001, ** p < 0.01, * p < 0.05                            Standard errors in parentheses 
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While we analysed only one project and the specific value of the regression coefficients 

pertain only to this case, our analysis produced results in line with current practice in 

software engineering and insights that we believe are useful to improve the practice of 

time estimation and project management. We discuss them in the following. Our 

modelling strategy shows that the task completion time can be modelled as a function of 

the number of documents produced in the context of the task (task size), the number of 

people allocated to it (resource allocation), and the number of interfaces with the other 

tasks (task interfaces).  

Task size: The number of documents, here, is a proxy for the size of a task, as the lines of 

code or the number of function points are in software development (Albrecht and 

Gaffney, 1983; Boehm, 1984; Symons, 1991). The positive relation between the number 

of documents and execution time (see Figure 3A) shows that “task sizing” can be useful 

also outside software engineering. We found that the logarithm of the number of 

documents performs better than the crude number, which means that a perfect estimation 

of the size is not necessary and a measure of the order of magnitude would perform well. 

Understanding which measures of task size are the most suitable for engineering design is 

a topic for future research and we suspect that a measure derived from the functional 

requirements, as it happens in software engineering (ISO, 2007), can be a good starting 

point. 

Resource allocation: We have also found a positive relationship between the number of 

people assigned to an activity and its execution time. In Figure 3B, it is clear that the 

relation is monotonic. The quadratic curve starts decreasing after ~90.5% of data points 

and does not represent a good fit anymore. The positive relation between the number of 

people allocated to an activity and its completion time shows that the amount of people 

assigned to a task should be used to make time estimations as tasks with higher number 

of people require more time. This is especially important as it has been documented, 

under the name team scaling fallacy, that underestimation of completion time increases 

as team size increases (Staats et al., 2012). Furthermore, activities with a high number of 

people assigned to them are more important for process robustness as errors or changes 

originating through such tasks can spread faster and affect more activities (Piccolo et al., 

2018). 

Task interfaces: The number of interfaces an activity has with other activities is also 

positively associated with the completion time. The relation is monotonic and no turning 

point is observed (see Figure 3C). Thus, in case of the relation between completion time 

and number of interfaces, we do not find a curvilinear relation, as for example claimed in 

Gokpinar et al., (2010) for the relation between the number of interfaces of a subsystem 

and the number of defects. We also found that the number of interfaces in input 

(indegree) has almost the same explanatory power as the total count of interfaces. This 

means that the completion time is in direct relation with the number of inputs that a task 

has to integrate. The relation between the degree and completion time reminds us of the 

importance of integrative activities during error propagation processes (Braha and Bar-

Yam, 2007; Piccolo et al., 2018). 

With a measure of activity size, people assigned to activities, and number of interfaces 

we were able to explain 50% of variance in the completion time. We argue that these 

measures, such as the number of people allocated to a task, are readily available or can be 

estimated during the planning stage of a project. The number of interfaces per activity 
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can be obtained by building the DSM for process sequencing. The measure of activity 

size could be estimated from the amount of functional requirements. One could be 

tempted to explain more variance by adding more variables to the models. While there 

are definitely many more factors that can affect task completion time, it is worthy to 

remember that the use of irrelevant information hinders good time estimates (Halkjelsvik 

and Jørgensen, 2018). We believe that the process of data analysis and the measures used 

here can be used to support experts in making better estimates, while helping them to take 

a more outside view (Kahneman and Lovallo, 1993). Studying how to integrate these and 

other metrics as well as the process of data analysis into the practice of project 

management is a topic for future research. 

6 Conclusions 

Estimating task completion time is difficult and often results in underestimates due to 

optimism bias and other human and situational biases and a lack of meaningful 

information on which to base the estimates. To provide a ground for better estimates, this 

paper combined and analysed multiple data sources from a large-scale design project, 

showing that task completion time relates to the structure of the project as captured by a 

Multiple Domain Matrix (MDM). Statistical analyses showed that task execution time 

correlates positively with the size of the task, the number of interfaces with other tasks, 

and the number of people allocated to the task. In our case, we were able to explain 50% 

of the variance. We discussed implications of the findings and gave pointers on how the 

three metrics used can be made available to managers during the planning stage of a 

project. Moreover, this study also showed a possible use of historical data to inform 

future decision-making. 
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