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Abstract 

There is increased government intervention worldwide towards supporting growth of the global 
Electric Vehicle (EV) market motivated by public interest in greenhouse gas emission reduction and 
energy security. Previous studies have shown a positive relationship between government investment 
and the growth of EV market share within the overall vehicle market. This paper describes a 
quantitative framework for analyzing the effect of EV-related government policies on emissions 
reduction that includes modeling decision making of the manufacturer, charging service operator and 
consumer.. Two interesting findings from applying this framework to specific urban use scenarios are 
reported. First, if the budget for the relevant government subsidies is increased, the focus should shift 
from direct support of battery EVs to building public infrastructure such as charging stations; second, 
government policies that affect the design of both charging services and EVs would allow the 
government more effective use of its investments. 
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1 INTRODUCTION 

The global electric vehicle market is growing in order to reduce greenhouse gas emissions and 
increase energy security. A recent review of major EV markets in the US, EU and East Asia showed 
that government public policies have been playing a major role in fostering this market growth (Mock 
and Yang, 2014). Such policies include (a) incentives for consumers (e.g., purchase bonus, reduced 
tax, and electricity cost discount), (b) infrastructure (e.g., charging station) development, and (c) 
investment in research and development. The above study also revealed how different emphasis in 
policy has led to different market shape. For instance, Norway has now the highest percentage of 
Battery EV (BEV) market share due to its high BEV incentives (e.g., low electricity cost and low 
taxes) and high fuel cost; while the Netherlands have the fastest-growing market in Plug-in Hybrid 
Electric Vehicles (PHEV) due to their policy emphasis. While current market data show positive 
correlation between government investments and the market share or growth rate for several countries 
(Mock and Yang, 2014), it is still unclear how government policies should be configured to induce an 
EV market growth consistent with government desires and attendant roadmaps.  
This paper is an initial attempt to address this question quantitatively by modeling the EV market as a 
game, with three stakeholders playing to reach equilibrium: Government, manufacturer and 
infrastructure (charging station) operator. For the government, we consider four types of public 
policies related to EV as realized in the US: (a) Recharging cost discount, (b) one-time EV purchase 
discount for consumers, (c) charging station subsidy, and (d) manufacturer subsidy for EV production. 
For the manufacturer, we focus on profit-maximizing decisions related to battery and powertrain 
design. For the charging station operator, we consider station location selection and charging service 
fee as value-maximizing decision variables, where value may include public interest. 
The resultant game equilibrium, under typical simplifying assumptions, reveals how the government 
budget can be optimally allocated to the manufacturer, the consumer and the charging station. Due to 
lack of a “standard” widely-adopted EV business model, we examine and compare three game 
scenarios for EV use in an urban setting: (a) All three stakeholders make decisions together to 
maximize a weighted sum of emission reduction and profit, (b) the manufacturer seeks maximal profit, 
while the government owns the charging service and aims at emission reduction, (c) all three 
stakeholders have their own objectives. Parametric studies explore how different budget levels affect 
emission reduction and profits. 
The remainder of the paper is structured as follows. Section 2 introduces the proposed framework and 
elaborates on modeling details and assumptions. Section 3 presents the game equilibrium results for 
the three scenarios and various parameter settings, and examines the causes for the differences among 
scenarios. Section 4 provides conclusions and suggestions for future work. 

2 PROPOSED FRAMEWORK 

We consider three stakeholders in a game-theoretic decision framework. The government determines 
public policies about subsidies; the EV manufacturer determines vehicle powertrain and battery 
designs for its BEV and PHEV products, and the charging station (CS) operator determines number 
and locations of charging stations as well as charging fee. The market shares of EV, PHEV and 
conventional vehicles are then determined by vehicle and charging service design attributes. Fig. 1 
summarizes the interactions among stakeholders and their decisions. Table 1 lists input decision 
variables, parameters, and output responses for each model. In order to investigate policy differences 
across various urban/suburban environments, we use three “city type” parameters, namely, drive cycle, 
candidate charging stations locations, and market size. The drive cycle and station locations directly 
affect manufacturer and charging station operator decisions, respectively, while market size affects the 
profit as predicted by a marketing model.   
We assume that equilibrium for all stakeholders will be reached for the given models and parameters. 
We define the public policy at equilibrium as the optimal policy. Due to lack of widely-accepted EV 
business models, we examine three decision-making scenarios that could result in different 
equilibrium points (i) All-In-One Scenario: The government, manufacturer, and charging station 
operator share a common interest in optimizing a weighted sum of emission reduction and profit from 
vehicle sales and from charging service; (ii) Two-stakeholder Scenario: The manufacturer only 
considers its own profit from vehicle sales, while the government aims to minimize the emission 
within its budget limit, taking charging service expense or profit into account; this is the case where 
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charging stations are government-owned operations; (iii) Three-stakeholder Scenario: All players 
reach equilibrium using their own objectives. Fig. 2 summarizes the problem formulations for these 
three scenarios. Note that we enforce government decisions so that they result in non-negative profits 
for both manufacturer and station operator across all scenarios. 

 
Figure 1. Multidisciplinary decision making framework for the EV market 

Table 1. Input decision variables, parameters, and output responses for each model 

 Public policy 
Engineering 

(BEV and PHEV) 
Operations  Marketing 

Decision 
variable 

EV and charging station 
subsidies, electricity 
price cut and tax cut 

Number of battery 
cells, gear ratio 

Number of 
charging stations 

Vehicle price 
Energy charging fee 

Input  Drive cycle 
Candidate 

charging station 
locations 

Market size, 
Outputs from the 

powertrain design and 
charging station models 

Output Public policy cost 

Vehicle range, speed, 
acceleration, energy 
consumption, PHEV 

emission, and 
manufacturing cost 

Average distance 
to the closest 

station 
Operating cost 

EV demand 
Charging station 

demand 

 

Figure 2. Three business scenarios for optimal decision making 
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2.1 Public Policy Model  

We consider four types of public policy currently available in the U.S. as decision variables for the 
government. Table 2 lists notations, definitions and bounds for these variables. 

Table 2. Public policy decision variables 

Decision variable Definition 
Lower  
bound 

Upper
bound 

1. EV subsidy Subsidy per kWh of battery capacity for the manufacturer $0 $600 

2. CS subsidy  
Percentage of subsidized installation and maintenance 
costs for the charging station operator 

0% 100% 

3. Electricity price cut  Percentage of cut of electricity price for station operator 0% 100% 

4. One-time tax cut Percentage of cut of registration fee for EV user 0% 100% 

 
Based on these decision variables, the total subsidies on EV, CS and electricity, as well as the one-
time tax cut can be calculated as follows: 
  

	 	
	 	

	 	 	  
 

(1)

	 	 	 	 	 	 	 	 	 	  
 

(2)

	 	 	 	 	 	
	 	 	 	 	    
 

(3)

	 	 	 	 	 	 	 	 	 (4)
 
The station maintenance cost in Eq. (2) and the electricity subsidy in Eq. (3) are calculated considering 
net present value for 10 years with 10% discount rate, assuming that every EV has a 10-year life span. 

2.2 Engineering Model 

We model one manufacturer that designs and sells a BEV, a PHEV and a conventional gasoline 
vehicle. The three vehicle simulation models are built using the AMESim software (AMESim, 2014) 
and following typical specifications for the Nissan Leaf, Toyota Prius Plug-in and Volkswagen Jetta 
vehicles, respectively, as representative examples. We use battery specifications from the Nissan Leaf 
for both the BEV and the PHEV. All vehicle component specifications are listed in Table 3. Note that 
the simulation models are meant to approximate the aforementioned representative vehicles rather than 
to provide high-fidelity models for them. 
Each vehicle model takes a drive cycle as input and uses a PID controller as the driver to follow the 
cycle. The control gains are fixed for all vehicle simulations. CO2 emissions are derived from 
simulations of the PHEV and the gasoline vehicle. The PHEV energy management control strategy is 
tuned to maximize electric-only range for the given drive cycle (rather than for sustaining the state of 
charge). The initial state of charge is set at 80% which reflects the state of the battery after visiting a 
fast-charging station. Powertrain control involves an ICE controller, an electric motor controller and a 
hybrid strategy controller. The hybrid strategy controller regulates energy flows by setting conditions 
to turn the engine on/off based on State of Charge (SOC), power request or wheel rotary velocity 
values. 
We consider three design variables: (1) the number of cells in series in one battery branch, (2) the 
number of branches in parallel, and (3) the final drive gear ratio, as listed in Table 4. For a given set of 
input variable values, the simulation outputs values for the emissions, range, battery/fuel consumption, 
top speed, 0-60mph acceleration, and vehicle manufacturing cost. Among these outputs, range and 
battery/fuel consumption are input parameters for the market demand model. Top speed and 
acceleration serve as engineering constraints: A feasible design should have a top speed greater than 
70 mph, and 0-60 acceleration less than 30 seconds. Emission reduction is used as the government 

4



ICED15  

objective. Vehicle costs, including battery cost and fixed vehicle cost, are calculated following Kang et 
al. (2015). 

Table 3. Vehicle component specifications 

 BEV PHEV Gasoline 
Vehicle weight 1696kg 1380kg 1307kg 
Tire radius 315.95mm 315.95mm 300.3mm 
Coefficient of drag 0.29 0.29 0.3 
Frontal area 2.27m2 2.27m2 2.10 m2 
Engine size - 1.8L 2.0L 
Engine max. torque - 142.5Nm @ 4000rpm 169.5Nm @ 4000 rpm 
Engine max. speed - 4500rpm 6500-6900rpm 
Engine max. power - 73kW @ 5200rpm 85.8kW @ 5200 rpm 
Fuel tank capacity - 40.1   54.9  
Motor(s) type PMSM PMSM - 
Motor(s) max. torque 280Nm 200Nm for both - 
Motor(s) max. speed 10390rpm 12000rpm for both - 
Motor(s) max. power 80kW 60 kW and 42kW - 
Battery cell capacity   33.1Ah/#cells 33.1Ah/#cells - 
Battery package capacity 
(before optimization) 

24kWh battery 12kWh  - 

 Table 4. Engineering design variables 

Design variable Lower bound Upper bound 

1. Number of cells in series in one branch of BEV 80 200 
2. Number of branches in parallel of BEV 1 4 
3. Gear ratio of BEV 2 12 
4. Number of cells in series in one branch of PHEV 1 50 
5. Number of branches in parallel of BEV 1 4 
6. Gear ratio of PHEV 5 7 

2.3 Operations Model 

Given a target city, the operations model takes as input the number of charging stations and picks from 
a candidate set of charging stations the optimal ones. Here we consider Direct Current (DC) fast-
charging stations that can recharge a 24 kWh battery to 80% capacity within 30 minutes. We adopted 
the p-median model (Tansel et al., 1983) to determine the optimal set of stations: In choosing p 
stations, the optimal locations minimize the average distance between any EV on the map and its 
closest station. The model then calculates the average distance to the closest station from any EV user, 
assuming that users are uniformly distributed in the city. This distance is used in the market demand 
model. The charging station operating cost is also calculated based on the number of charging stations, 
considering installment, maintenance, and electricity costs (Kang et al., 2015). 
The example city (Ann Arbor, Michigan, USA; 11 miles by 11 miles) has 15 candidate charging 
station locations, selected among its existing public parking lots, as seen in Fig. 3. The optimal 
locations are pre-optimized for p from 1 to 15, and the corresponding average distances are recorded. 
For example, if we plan to build five charging stations, locations A, B, G, K, and N in the figure will 
be chosen.  
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# of
CS 

A B C D E F G H I J K L M N O 

1         ●       

2    ●          ●  

3    ●       ●   ●  

4 ●      ●    ●   ●  

5 ● ●     ●    ●   ●  

6 ● ●     ● ●   ●   ●  

7 ● ●     ● ●   ● ●  ●  

8 ● ●     ● ●   ● ●  ● ● 

9 ● ●   ●  ● ●   ● ●  ● ● 

10 ● ●  ●  ● ● ●   ● ●  ● ● 

11 ● ● ● ●   ● ● ●  ● ●  ● ● 

12 ● ● ● ●  ● ● ● ●  ● ●  ● ● 

13 ● ● ● ●  ● ● ● ● ● ● ●  ● ● 

14 ● ● ● ●  ● ● ● ● ● ● ● ● ● ● 

15 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 
 

Figure 3. Optimal charging station locations using candidates (A to O) 

2.4 Marketing Model 

Three pricing variables are of interest in modeling the market demand. These are BEV and PHEV 
retail prices and the charging fee. To estimate market demand, we build a linear utility model with six 
attributes: (1) Vehicle type (BEV, PHEV or Gasoline), (2) vehicle price taking EV subsidy into 
account, (3) registration fee, (4) vehicle range, (5) fuel cost to fully refuel (or recharge) the vehicle, 
and (6) average distance to the station.  Besides vehicle type, each of the other five attributes is 
assigned five levels, as summarized in Table 5. 

Table 5. Attributes levels and their part-worths 

Attributes Unit 
Level  (part-worth) 

Importance 
1 2 3 4 5 

Vehicle type  BEV (-0.50) PHEV (0) 
Gasoline 

(0.50) 
  7.8% 

Vehicle price  US$ 15k (1.94) 25k (0.97) 35k (0) 
45k (-
0.97) 

55k (-
1.93) 

30.0% 

Registration  US$ 0 (0.13) 40 (-0.13)    2.0% 

Vehicle range miles 70 (-1) 150 (-0.5) 250 (0) 350 (0.5) 450 (1) 15.5% 

Fuel cost  US$ 0 (1.13) 15 (0.57) 30 (0) 45 (-0.57) 60 (-1.13) 17.5% 
Avg. distance 
to the station 

miles 0.5 (-1.75) 3 (-0.88) 5 (0) 7 (0.88) 10 (1.75) 27.2% 

 
The linear utility model assumes additive utilities from all attribute levels. Assuming a homogeneous 
population, the part-worth values, i.e., weights, on these levels are approximated as follows. Denote 
“attribute importance” values as the differences between the highest and lowest part-worth values of 
each attribute and normalized to sum to one. We set attribute importance according to an existing 
survey detailed in Kang et al (2015). In order to assign part-worth values to all attribute levels, here we 
set the part-worths of the highest and lowest levels of vehicle range to -1 and 1, respectively. The 
corresponding part-worth values of other attributes can then be assigned using attribute importance 
and assuming linearly increasing or decreasing part-worths with respect to the levels. 
For given attribute levels, the vehicle demand can be calculated as:  

	 	 	
∑ ∈

 , 
(5)

where vj is the utility of vehicle j, and J is the set of all three vehicles. Based on the demand of EVs, 
we can estimate the demand for charging service as 
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	 	 	 . 

(6)

 
Changing frequency is estimated using EV users’ behavior data from Smart and Schey (2012) and 
ECOtality (2014). Average charging events per vehicle-day driven is 1.05. Further, 4.64% of charging 
events happen from public DC fast-charging stations and the rest are from home (Level 1) or charging 
stations (Level 2). Here we consider only DC fast-charging stations and assume a universal EV 
lifecycle of 10 years. 

3 OPTIMIZATION AND PARAMETRIC STUDY  

The model parameters are set as follows. Assume the market size of Ann Arbor is proportional to that 
of US. This gives us an estimated market of 5,800 consumers. For drive cycles, the standard EPA 
Highway Fuel Economy Drive Cycle is used. Look-up table of optimal charging station locations and 
average distances for Ann Arbor are pre-computed, as discussed in Section 2.3. 

Table 6. Optimal decision values with $2.5M budget 

 Variable Scenario 1 Scenario 2 Scenario 3 

Public policy 
 

EV subsidy 
(per battery capacity) 

$600 $369  $600  

Charging station subsidy  100% 100% 64% 
Electricity price cut 100% 100% 100% 
One-time tax cut 100% 100% 100% 

Engineering 
BEV #cells/branch (#branch)  159 (1) 175 (2) 172 (1) 
PHEV #cells/branch (#branch) 38 (3) 17 (3) 27 (4) 
BEV (PHEV) gear ratio 2.8 (5.0) 2.9 (7.0) 3.0 (7.0) 

Operations Number of charging stations 14 7 14 

Marketing 

EV price (before subsidy) 
$23,969 
($35,969) 

$26,540 
($42,785) 

$16,614 
($29,594) 

PHEV price (before subsidy) 
$24,105 
($32,707) 

$21,647 
($24,014) 

$19,688 
($27,838) 

Charging fee $0 $0 $1 per kWh 

Table 7. Responses with $2.5M budget 

 Response Scenario 1 Scenario 2 Scenario 3 

Policy budget 
allocation 

Total $2.5M $2.5M $2.5M 

BEV subsidy  $0.39M $1.19M $0.60M 

PHEV subsidy $1.51M $0.47M $1.36M 

Charging station subsidy $0.38M $0.53M $0.34M 

Electricity price cut $0.21M $0.30M $0.19M 

One-time tax cut $10K $12K $8K 

Market response 

Emission 4.67e+10g 4.61e+10g 4.66e+10g 

BEV profit $0.60M $0.76M $0.43M 

PHEV profit $3.50M $2.58M $1.74M 

Station profit $0 $0 $0 

Market share (BEV: 
PHEV: Gasoline) 

1.2%:7.8%:91.0% 2.5%:8.6%:88.9% 1.4%:5.8%:92.7% 

 
In this section, we examine the three business scenarios from Fig. 2, each with nine government 
budget levels: $0, $2.5M, $5M, $7.5M, $10M, $12.5M, $15M, $17.5M, and $20M. The currency used 
in the study is US dollar. We use the Sequential Quadratic Programing (SQP) algorithm for solving 
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the resultant nonlinear continuous optimization problems. These problems are solved iteratively until 
reaching equilibrium. Discrete variables, e.g., the number of battery cells and branches, are relaxed to 
be continuous during optimization and rounded to feasible values as a post-process. Due to non-
convexity of the objective functions, we parallelize the SQP routine with ten independent initial points 
in order to avoid convergence to poor local solutions. The results thus obtained cannot be rigorously 
claimed as optimal, but they are sufficient for the purposes of this study. 
Table 6 demonstrates the optimal decision for the three scenarios, with a budget level at $2.5M. Table 
7 shows the corresponding responses of these optimal decisions. 

3.1 Summary of the Optimal Public Policy 

We summarize the optimal allocation of government investment and the corresponding vehicle market 
shares for all budget levels and three scenarios in Fig. 4. We see that as the budget increases, the 
government tends to invest more in a BEV subsidy among all options. This is because BEV is the 
main contributor to emission reduction and thus its investment is the most effective for the 
government. However, this trend diminishes after the budget goes beyond $10M. The reason for this 
could be that, while investment in BEV is cost-effective, other investments are proportionally required 
(e.g., the installment of charging stations) to keep the utility (and thus the market share) of BEV 
increasing. 

 

 

Figure 4. Investment allocation and market share 

3.2 Parametric Study on Budget Level  

We derive the optimal decisions for all three scenarios and nine budget levels to investigate how the 
budget levels affect emission and profit (BEV + PHEV + charging stations). The results are shown in 
Fig. 5.  

 

Figure 5. Parametric study for budget 

We see that the all-in-one and the two-stakeholder scenarios have a similar trend in emission reduction 
and profit along budget allocation numbers, while in the three-stakeholder scenario, both objectives 
stop improving when the budget is greater than $12.5M. We note that for the first two scenarios, the 
budget limit is always met at the optimal public policy decision, meaning that all government money 
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is put into use in order to yield the best outcome. However, in the third scenario with a budget greater 
than $12.5M, the government will not spend the entire budget in its optimal decision. The reason is as 
follows: We notice that at $12.5M, government subsidies for the manufacturer and incentives for 
consumers have reached their upper bounds. In this situation, there exist two possibilities for the 
government to spend the rest of its money: Increasing subsidy for charging stations would only result 
in higher charging service profit; increasing the EV market share would lead to more subsidy for the 
manufacturer and the consumers and thus further reduce emissions. However, in the three-stakeholder 
scenario, market share is affected only by the manufacturer and the charging service, rather than 
government subsidy. This is why at equilibrium the optimal policy will not spend all the allocated 
budget. With the same settings, the other two scenarios yield much better outcomes, in terms of both 
emissions reduction and total profit. This result raises an interesting hypothesis that if the government 
takes more control of the EV market, it can deploy its investment more effectively. 
The all-in-one scenario is a multi-objective problem (i.e., emissions vs. total profit) and we can 
examine the impact of different budget allocations on the Pareto tradeoff curve. The Pareto curves in 
Fig. 6 show how tradeoffs are sensitive to budget levels. The blow-up in the bottom right shows the 
tradeoff at $7.5M budget in more detail. 
 

 

Figure 6. Pareto curves for the all-in-one scenario 

 4 CONCLUSION 

We presented a multidisciplinary framework to analyze quantitatively the effect of government public 
policies on the EV market, through modeling the decisions of the manufacturer and charging station 
operator and the resulting consumer demand. We examined three scenarios for all stakeholders in the 
market to reach equilibrium. 
There are two interesting findings from this study. First, we see that with an increasing budget but 
lower than $10M, the government should spend its increasing money allocation on BEV subsidies for 
emissions reduction purposes. When the budget increases beyond $10M, investment on infrastructure 
(e.g., charging stations) becomes necessary in order to keep the BEV utility high. Second, by 
comparing equilibrium outcomes from three scenarios, we showed that the government may deploy its 
investment more effectively when it has more control of the EV market, e.g., when it is able to make 
decisions on EV and charging service design.  
In summary, the presented framework enables a holistic view of the EV market and allows policy 
makers to examine the impact of subsidy budget levels and policies while taking all stakeholders’ 
interest into account. Next steps that can improve the value of this work include (i) performing 
conjoint analysis surveys to derive more realistic demand models for major EV markets; (ii) allowing 
more competitors, e.g., more manufacturers and charging station providers as well as a variety of EVs, 
in the game model; (iii) examining policy differences across different types of cities to understand 
how would city size, traffic conditions, and consumer preference in different nations or cities affect 
EV policies. 
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