
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN
ICED 03 STOCKHOLM, AUGUST 19-21, 2003

TOWARDS AN ACTION LOGIC FOR DESIGN PROCESSES

Filippo A. Salustri

Abstract
While the creative and innovative aspects of engineering designing are arguably its most im-
portant aspects, it is equally important that this creativity be tempered and directed through
the use of sound and rigorous methods. Formal logic can provide a foundation for the con-
struction of such methods. A formal model of design processes, the Axiomatic Design Proc-
ess Model (ADPM) is presented. The model, based on the action logic ALX3, is able to
model the imperfect reasoning capabilities of human design agents. This paper presents the
background and fundamentals of ADPM with particular emphasis on the representation of
design principles as goals. Various possible application areas of ADPM are also discussed.
It appears, based on the preliminary results, that ADPM can be an appropriate vehicle for
modelling engineering design processes.

Keywords: process, systematic product development, descriptive models of designing

1 Introduction
The overall goal of the author’s research is to formalise aspects of engineering designing
without limiting opportunities for creativity and innovation. An overall framework, Artefact-
Centred Modelling [1], distinguishes between product models, modelling languages, and pro-
cesses that manipulate those models. Previous research has developed the Axiomatic Info r-
mation Model for Design (AIM-D) [2] uses axiomatic set theory to establish a rigorous prod-
uct model logic. Similarly, the author is now starting to develop an Axiomatic Design Proc-
ess Model (ADPM) intended to capture aspects of a generalised design process with formal
logic. ADPM is intended to be a formal framework for such tasks as: reasoning about design
and design research, formulating new design methods, streamlining existing processes, or-
ganisational modelling, teaching design, and developing new computer-based design aids.

This paper introduces ADPM some early results in its development. In particular, an ap-
proach for the representation of design principles (e.g. minimise the number of parts in a
product) is presented to show how empirical and intuitive notions can be formalised.

The rest of this paper is organised as follows. First, some background is presented, to indi-
cate the worth of formal logic in engineering design. The discussion leads to the author’s
hypothesis that drives this project. The fundamentals of ADPM are then introduced, with
emphasis on (a) the boundary conditions that mark the initial and final states of a design pro-
cess, and (b) the representation of some kinds of design principles. Potential applications of
ADPM are then discussed. Finally, some concluding remarks are directions for future work
are presented.

2 Background
Design science is the pursuit of formalisms for design using scientific methodologies. Design
has important subjective components as well as objective ones. The application of formal
systems to the objective aspects of design is well documented; examples include [3-5].

Design is an artificial endeavour, not a natural phenomenon. Thus, strictly scientific ap-
proaches to developing a design science are of limited use. Science is, however, based on
logic: a fundamental requirement of “scientific” theories is internal logical consistency. Oth-
ers have explored this point in detail, such as [6] and [7]. Because of this distinction, the cur-
rent author believes that development of a real design science will depend on the use of sym-
bolic logic instead of science.

ADPM is based on two observations made by the author while surveying the literature. First,
other attempts to formalise design processes seem to impose either too much or too little
structure. Formalisms based on heuristics (e.g. Hubka and Eder [8] and Pugh’s Total Design
[9]) are flexible but logically unreliable. Other formalisms, such as Axiomatic Design [3]
and the work in [10], have relied on highly structured systems that are nonetheless only na-
ïvely connected to formal systems that cannot be verified. Still other formalisms that have
relied heavily on mathematical interpretations, such as that of Zeng and Gu [11], allow more
reliable reasoning at the expense of flexibility. Most importantly, such theories generally
treat design processes as lacking the conscious element of the human designer driving the
process forward. While such approaches can highlight certain important features of design
processes, they cannot address much of the variability that can occur during design processes.

It would be most advantageous to find a formalism that structures design processes without
limiting the flexibility of its application or the creativity of its users.

The second observation comes from the results of the protocol analysis of McNeill et al [12],
where it is shown that a designer will interleave periods of analysis, synthesis, and evalua-
tion, cycling between them over the course of the experiment. There also seemed to be op-
portunistic moments in the reported protocols where concern for function, structure, and be-
haviour appeared interleaved with one another. It seemed to the current author that designing
could consist of multiple concurrent processes that work partly against one another with re-
spect to immediate goals. It is this antagonism that leads to a deeper understanding of the
problem: that there is a context-sensitive balance between design goals, and that design proc-
esses seek to find that balance. One might then hypothesise that a formalised model of de-
sign actions could help designers reach these balanced designs.

Furthermore, these processes work towards a common overall goal but with potentially op-
posing perspectives even if there is only one designer. Of particular note is the interleaved
concurrency of synthesis and analysis tasks, which supports the notion that each design deci-
sion impacts on the nature of the design problem being solved.

These observations have let me to adopt the following hypothesis: a design process is a dis-
crete-event system occurring as a result of multiple “agents” acting towards a common gen-
eral goal, each agent having its own priorities, context, and domain knowledge. No com-
mitment is made here to the number of designers involved. Indeed, one of the most interest-
ing possibilities here is that the cognitive process of a single designer may be successfully
modelled with multiple agents.

The author believes that formal logic should provide a better mechanism than mathematics
for this. Logic is the foundation of mathematics. As mathematics is the logic of numbers, the
author believes that we need a new logic of design. There are many different logics. Some

have been applied successfully to explain and reason about belief systems, economic systems,
organisations, and other essentially non-deterministic and social entities. Logic, in this sense,
is a framework that can expose, represent, and support the manipulation of, the structure that
underlies a process, even if that process has elements that are not “logical”.

There are various ways that formal logic can be used to formalise design processes. The
author has investigated a number of these approaches, which have been reported elsewhere
[13]; space restrictions do not permit a review of that work here. The result of that investiga-
tion is that a particular family of logics, called action logics, are best suited to design process
formalisation, and that one action logic in particular, called ALX3 [14] is the best of those. A
brief summary of the author’s investigations is as follows. Action logics fall under the
branch of logic called model theory. In this approach, two 1st order theories are layered one
atop the other. This avoids problems of self-reference that can lead to serious logical contra-
dictions. The first theory, called the object theory, describes the domain of interest (i.e. prod-
uct models). The author uses AIM-D, a formal product modelling system based on set theory
(other systems could be used). The second theory, called the meta-theory, formalises rea-
soning about the object theory. In this case, it formalises the processes that generate product
models: design processes. This layering of 1st order theories helps ensure a robust system.
The soundness of ALX3 has been demonstrated in [14].

Finally, ADPM is intended to be compatible with other theories of designing (e.g. Axiomatic
Design). Clearly, further work is needed to determine how, if at all, specific other theories
can be represented in ADPM. The point is, however, to provide a formal framework for
treating theories of designing and not necessarily to prove or disprove any one other theory.

3 The axiomatic design process model
In this section, some fundamental statements about design processes will be presented using
ALX3. These statements form a set of design axioms that constitute the basis of ADPM.

We assume a separate language exists for the product models (in this case, AIM-D). This
means that whole product models are treated as single variables in ADPM. Similarly, we
assume the design requirements are separately treated and are thus variables in ADPM. The
author notes that the only design requirements included here are those pertaining to the prod-
uct; requirements about the manufacturing system for the product, engineering management,
scheduling, workflow, and other aspects of product development are not included. This is a
shortcoming of AIM-D, not the current ADPM work. While these aspects are essential, they
are beyond the current work and will be treated properly in the future. This also maintains
the 1st order nature of ADPM.

The domain of ADPM consists of states. Each state contains a different product specification
and requirements specification, so the domain includes every possible model that can be rep-
resented with AIM-D. Only one state is the actual state; other states are only potential ones
and may become the actual state through the execution of some action or sequence of actions.
An action in this sense is a behaviour; i.e. ADPM does not attempt to formalise the cognitive,
creative activities of a design, but rather seeks to provide a formal reasoning framework for
the behaviours exhibited by designers as a result of those cognitive, creative activities. It is
in essence a language for formally expressing design agent behaviours, and for reasoning
about the processes that consist of sequences of those behaviours.

We assume a constant function (i.e. the same in every state) that evaluates a product model
with respect to a set of requirements. This function is able to (a) determine if the product

model in a particular state satisfies the requirements in that state, and (b) produce a rank of
the product model with respect to the requirements. This rank can be used to order different
alternative designs. The exact nature of the evaluation function is a subject of ongoing study.

We can begin now to identify the boundary conditions of a design process. For example,
consider a design enterprise whose bid for a design project was accepted. It is reasonable for
the designers (agents in ADPM) to believe the design requirements specified in the bid are
now fixed and constant. Admittedly, this is not necessarily realistic, but we assume this as a
simplifying assumption to establish the foundation of ADPM. This can be expressed as:

bid (r) ⇒ Bd(rPdr’), (1)

which is read “if a bid’s requirements have been accepted, then a designer believes that those
requirements are preferred to any other set of requirements.” Bd is the ALX3 believe op-
erator such that Bd (x) means “agent d believes statement x is true.” Pd is the ALX3 prefer-
ence operator such that xPd y means “agent d prefers state x to state y.”

It is also reasonable that all the designers believe that there must exist a product that will sat-
isfy all the design requirements stipulated in the bid. This can be written as:

bid (r) ⇒ Bd (Ad (E (r, p))), (2)

which is read “if a bid is successful, then a designer believes that there is a process by which
a product can be designed that satisfies the bid’s design requirements.” Ad is the ALX3 ac-
cessibility relation, such that Ad (x) means “there is a sequence of actions executable by agent
d that results in a state x.”

Finally, at the end of a design process, the designer would know that the design meets the
requirements. This is written:

Kd (E (r, p)). (3)

The task of the designer is to reach the final state in (3), from the initial state in (1) and (2).
Since knowledge is defined as true belief, then achieving the final state involves executing
actions that (a) establish a set of beliefs about a product, and (b) determine the truth of those
beliefs. These actions can be grouped into three broad categories. Synthesis tasks are those
that expand the belief system about the product. Analysis tasks are those that either expand
the set of requirements or remove beliefs that are demonstrated to be false. Finally, evalua-
tion tasks are those that compare a product’s design to the requirements.

Statements that explicate the transition between the initial and final states constitute a de-
scription of the process itself. Since there are an infinite number of possible design proc-
esses, the author is focusing initially on general statements and principles.

There is evidence, in the form of the protocol studies of McNeill et al [12] and other works
such as [3], that analytic and synthetic tasks occur in alternation. Accepting this as a charac-
teristic of design processes in general, we can formalise this idea. For example, it can the
case that a designer will prefer to advance either the requirements specification of a design or
the product specification, but not both at once. This is written in ADPM as:

Kd (¬E (r, p)) ⇒ [(r’ ∧ p) ∨ (r ∧ p’)]Pdψ, (4)

and is read: “if the designer knows that the current design does not satisfy the requirements
(i.e. the design is not completed), then the designer prefers states where only either the re-
quirements or the product model have been changed.”

In order to represent the transition between synthetic and analytic tasks, we introduce some
abbreviations:

rPd =def r ∧ p ∧ (r’ ∧ p) Pd (r ∧ p’), (5a)
pPd =def r ∧ p ∧ (r ∧ p’) Pd (r’ ∧ p). (5b)

rPd indicates that changes to the requirements are preferred to changes in the product model,
and pPd is the converse.

It is not clear from the available literature what condition holds when a change from synthesis
to analysis should or does occur. Nonetheless, let us postulate that a designer would change
from synthetic tasks to analytic tasks – or vice versa – when he believes that performing more
of the same kind of task will advance the design. The author refers to this as the conservative
approach to task type alternation. In ADPM we can write this as:

rPd ∧ Bd (¬…a r’ ∧ r’Pdr) ⇒ …b pPd (6a)
pPd ∧ Bd (¬…a p’ ∧ p’Pdp) ⇒ …b rPd (6b)

In (6), …a r means that there is an action a whose execution results in achieving a state r. (6a)
says that given cases where a designer prefers to advance the requirements versus advancing
the product model, the designer will change that preference when the designer believes that
there are no actions allowing a more-preferred requirements specification to be reached. (6b)
says the converse. These statements capture the notion that a designer will change between
analytic (or synthetic) tasks only when there is no alternative.

We note the use of the belief operator in (6). There may in fact be further actions that a de-
signer could take, if he were aware of them, but since ADPM agents are imperfect reasoners,
they must act on their beliefs when they lack knowledge.

Clearly, (6) is not an all-inclusive principle. For example, it does not address opportunistic
design [15] in which a designer can switch between synthetic and analytic tasks at the first
opportunity. We can represent this progressive approach to task type alternation by assuming
that an agent switches between synthetic and analytic actions as soon as such opportunities
are noticed. In ADPM:

rPd ∧ Bd (…a p’ ∧ p’Pdp) ⇒ …b pPd (7a)
pPd ∧ Bd (…a r’ ∧ r’Pdr) ⇒ …b rPd (7b)

(7) formalises opportunistic design. The difficulty with this approach is that a designer will
be switching constantly between analytic tasks and synthetic tasks regardless of whether such
a switch is warranted. In real design situations, these criteria are more complex. One possi-
bility for a balanced approach to task type alternation is that the evaluation function, E(r, p),
is used to rank possible states arising from the selection of either a modified product, p’, or
modified requirements, r’. Such a ranking would have to be based on the designer’s beliefs,
since it amounts to predicting the future.

rPd ∧ Bd (…a p’ ∧ p’Pdp) ∧ Bd (…b r’ ∧ r’Pdr) ∧ Bd(E(r, p’) > E(r’, p)) ⇒ pPd (8a)
pPd ∧ Bd (…a p’ ∧ p’Pdp) ∧ Bd (…b r’ ∧ r’Pdr) ∧ Bd(E(r, p’) < E(r’, p)) ⇒ rPd (8b)

(8) defines a richer condition for switching between analytic and synthetic tasks. An agent
must believe that there is one action that will advance the requirements analysis and another
that will advance the product description, and that one advance is better than the other with
respect to E.

(6), (7), and (8) can all be thought of as design process strategies, but they are not mutually
exclusive. If they were all allowed in a design process, one must select among these strate-
gies for a particular process. Indeed, it is also possible that more than one of these strategies
could be employed, by different designers, and at different times in the same process. Ex-
actly how this would work is a matter for further investigation.

In summary, notwithstanding a clear need for further development, it seems evident that
ADPM can represent some aspects of design processes. Future work will show just how use-
ful such a formalisation is (or is not).

Within the framework of ADPM, some common design principles can be formalised as
goals. A goal is an implicit description of the kinds of states that represent key achievements
in a design process.

To demonstrate the representation of design principles in ADPM, consider the example:
minimise the number of parts. One may argue that this principle is a design optimisation or a
constraint satisfaction task. In practice, however, one can achieve process efficiencies by
setting the minimisation as an issue to be considered regularly, and that there reaches a point
where further minimisation is not beneficial. This interpretation likens it to goal achieve-
ment. ALX3 provides some support for goals that are precisely of this sort of optimisation.

The basis of this goal is an ability to know, calculate, or estimate the number of parts in a
product in any state. This function is constant in the domain: the same function is used to
calculate the number of parts in any states. Let the predicate np(x) be true when x is the
number of parts of a product.

Next, we establish that a designer prefers states with fewer parts. In ADPM:

(x < y) ⇒ np(x)Pdnp(y); (9)

that is, “if x is less than y, then an agent prefers designs with x parts to those with y parts.”

The preference operator, P, defined axiomatically in ALX3, states facts without explanation;
that is, there is no commitment to the rationale for the preference. This is good thing in that it
decouples the statement of a preference from its justification, allowing the treatment of these
two issues separately. As it happens, however, in this case we can actually interpret (9) as a
partial rationale, read as “a designer prefers designs with x parts to designs with y parts be-
cause x is less than y.” This will be discussed further subsequently.

One can imagine (9) now as a criterion for selecting actions. Preferred actions lead to pre-
ferred states. However, we must avoid local optima of these preferences. Without formally
defining some restrictions on this preference, it is possible that an agent will select an action
that leads to a preferred state from which an even more preferred state is not accessible.

Masuch and Huang [16] restrict this kind of goal by limiting preferred states to those that
allow other even more preferred states to remain accessible. However, the current author
does not believe this is appropriate in design. It is easy to imagine cases where an action that
lessens the number of parts in a product does so to the detriment of the product. That is, the
goal is not defined only by the actions that can be taken to improve one design characteristic.

The author believes that the real limitation is the trade-off between all the goals to be met
(i.e. principles to be applied) by the designer. Improving one characteristic of a product may
deteriorate another. This must be avoided. We need a rule, then, that states that improve one
product characteristic cannot do so at the expense of any other characteristic.

Since generally we cannot know how some values of characteristics are rated “better” or
“worse” than others, we must confine this determination to designers’ preferences only. This
is not so bad because, as is seen in (9), rationale can be treated separately from preferences.
We then come to a version of the principle of minimising parts in ADPM:

Gt[np(x)] =def np(x)Pdnp(y) ∧ (np(x) ë ψ(u)) ∧ (10)
Bd[∀z [np(z)Pdnp(x) ⇒ [np(z) ë ψ(v)] ∧ ψ(u)Pdψ(v)].

(10) defines a trade-off goal (Gt) for a value x of the design characteristic np (number of
parts): an agent prefers products with x parts to products with y parts, so long as the designer
believes that more preferred values, z, are such that they cause another characteristic (ψ) to
obtain a less preferred value. Other characteristics might be weight, cost, lifetime, manufac-
turability, reliability, etc. (The symbol ë denotes the ALX3 causation operator which de-
notes that its antecedent is the cause of its consequent. Causation is not to be confused with
material implication, ⇒.) (9) now defines a physical basis of the preference in (10), and (9)
and (10) define the goal of minimising the number of parts in a product within a context of
other possibly conflicting goals.

We can use this goal statement as a template for a general category of design principles. Let
x, y, z, u, and v be arbitrary values. Let ψ(x) and φ(x) be two functions that associate values
with product characteristics (like np(x)), and let xOφy be an order for characteristic φ (like
x<y) such that the antecedent (x) precedes the consequent (y) in the order. We can write:

Gt[φ(x)] =def φ(x)Pdφ(y) ∧ (φ(x) ë ψ(u)) ∧ (11a)
Bd[∀z [φ(z)Pdφ(x) ⇒ [φ(z) ë ψ(v)] ∧ ψ(u)Pdψ(v)],

xOφy ⇒ φ(x)Pdφ(y). (11b)

(11) is now a general formalised principle of design that embodies two aspects. First, (11a)
captures trading off one kind of improvement against other kinds of improvement and pro-
vides a criterion for selecting design actions. Second, (11b) gives a partial account of why a
particular preference exists for a designer. This allows one to translate between information
about a design, and how a designer could seek to improve it. The kind of rationale indicated
by (11b) captures the invariant physical rationale over all reasonable cases.

(11) is by no means a complete account of how one might balance a design by trading off
conflicting goals. (11a) says nothing about the priority of different characteristics. For exam-
ple, increasing safety may be more important than decreasing cost in one product whereas the
opposite might be true elsewhere. Nothing in (11a) can help a designer account for this.

We can introduce axioms for specific cases that capture preferences explicitly. For example,
let s(x) be a function that assigns a value x to a safety characteristic s, and let c(x) be a similar
function for cost. Let the values of s and c be ordered by functions Os and Oc. We can write:

[xOsy ⇒ s(y)Pds(x)] ∧ [uOcv ⇒ c(u)Pdc(v)] ∧s(y)Pdc(u). (12)

(12) states that safety is preferred to be high, that cost is preferred to be low, and that high
safety is preferred to low cost. This kind of axiom captures the coupling between product
characteristics with respect to designer preferences. When trade-off goals as defined in (11)
cannot account for such preferences, axioms like this can be used.

Furthermore, there are situations where a significantly better value of one characteristic is
acceptable if there is a corresponding but very small worsening of another characteristic. For
example, say that some action could reduce the number of parts in a product by 10%, but

only with a 1% increase in cost. (11) does not allow this, even though in practice there could
be very good reasons for it. One way to address this is to associate with each value a toler-
ance range or interval, or even to use fuzzy values. So long as variations arising from in-
stances of (11) remain within the tolerable range, then the associated design actions are ac-
ceptable, and the goal is only violated when changes fall outside a value’s tolerance interval.

We note that the particulars of the value model do not affect the validity of ADPM although
they have obvious implications to the usability of the model. One can use fuzzy, crisp, or
interval values without loss of logical rigour. Investigating the implications of different value
models within ADPM is a topic for future research.

Also, (11b) is an incomplete rationale for a preference. There might be reasons why a de-
signer might need to violate (11b). For example, a designer may have some past experiences
that inform him to prefer designs that violate (11b) because in the long term, there will be a
net benefit for the product, but for which there is no known rationale – except his experience.
In such cases, an axiom can be development, like (12), to represent this. A detailed study of
the impact of design rationale on ADPM is also a matter of future study.

This concludes the introduction of ADPM. Clearly more work is needed, but the author be-
lieves that the foregoing has shown ADPM’s potential to formalise design processes.

4 Potential applications of ADPM
In this section, some possible areas of application for ADPM are discussed to give a sense of
the system’s potential breadth and impact.

The author has done some work in the use of variants of the design structure matrix in auto-
motive engine design [17]. In that work, we captured bi-directional causal relations between
engine systems and components. These relations could be described by actions that change
the state of the engine design. Here, ADPM could formalise the actions and to reason about
them. Since ADPM supports ALX’s inference system, it may be possible to partly automate
reasoning about engine design. For example, one might find alternate action sequences to
achieve goal states by exploring the ADPM state space with intelligent agents, and selecting
those that shorten lead-times by simplifying and re-sequencing design tasks. It may also be
possible to develop libraries of action sequences that capture “corporate memory”.

Another possible use of ADPM is in the development of new design processes (or, equally, in
the redevelopment of existing processes). For example, ISO 16949 defines a process man-
agement standard for product development. The tasks set forth in the standard can be thought
of as black boxes that together impose system-wide constraints on a design process. If an
ADPM model of ISO 16949 were developed, it might be useful as the starting point of proc-
ess development. Given the formal nature of ADPM, conformance to the ISO standard could
be determined unequivocally. Logically manipulating statements within the ADPM frame-
work rearranges design task definitions. The results of such investigations could lead to new
process models that remain consistent with the ISO framework.

ADPM can be used directly as a research tool. One may pose hypotheses about how design
happens in particular environments and then reason about the possible consequences of ac-
tions taken by designers. One could, for example, study the impact of different preferences
on the sequencing of design tasks, to identify preferences that lead to improved processes.
Such preferences could indicate best practices, and their identification without the usual
benchmarking exercises, that can be disruptive to daily operations, could facilitate the propa-
gation of those best practices, again leading to improved design capacity. For example, the

axioms of Axiomatic Design [3] can be written in ADPM; the logical implications of the axi-
oms can then be explored formally. The author is currently beginning to study this point.

ADPM can also be used to simulate design processes. Such simulations could be used as test
vehicles for new design methods. Clearly, such simulations would be only rough approxi-
mations of the real world. Still, the results of process simulations would be at least as useful
as other simulations to identify problems and benefits of a system. The simulations can also
be used to study the effect of different product modelling languages on design process effi-
ciency. One might reasonably substitute AIM-D with an industry standard such as STEP; in
that case, STEP would capture (a portion of) the design state, and ADPM can be used to de-
scribe and reason about processes for evolving STEP descriptions of products.

One more area where ADPM could find application is in enterprise modelling. Design proc-
esses are tightly coupled to the organisational structures in which they are practised. It makes
sense that changes to a design process would likely require supporting organisational
changes, such as changes to workflow or the hierarchy of responsibilities. ADPM could
model business actions as easily as it can represent the technical perspective. One might ex-
pect that such an integrated business/technical model of design enterprises could be useful to
initiate and manage overall business processes as they occur in technical environments.

Finally, one can expect new computer-based tools to be developed from ADPM. Logics can
usually be implemented, at least in part, as tractable computational systems that can carry out
deductive, inductive or abductive inferences. ALX3’s inference system is a conventional
deductive one, but one might consider other inference systems in the future. One can imag-
ine a transparent AI application implementing ADPM that monitors the actions of a designer,
automatically suggesting courses of action in response to the actions taken by the designer.

5 Conclusions
This paper has described a role for formal theories in the study and development of design
processes. While many aspects of design cannot (and arguably should not) be formalised,
there are other, objective aspects of designing that can benefit. The rigour available to rea-
soning agents who have formal tools at their disposal is substantial compared to informal and
ad-hoc systems. The author believes that logic should form a foundational aspect of engi-
neering designing, and presented one possible formalism for design processes, ADPM, which
is based on a sound action logic, ALX3, and which is capable of representing at least some of
the fundamental principles and strategies of designing. Of particular note is the system’s
capacity to represent the actions and beliefs of imperfect reasoning agents such as human
designers. As a formal language, it permits the representation of general principles as well as
specific facts about particular design processes, and it (currently) permits deductive reasoning
about the design process models it represents. Clearly, ADPM is immature, but the author
believes it has the potential to extend our understanding of designing and develop new and
better systems to aid designers.

Acknowledgements

The author acknowledges the support of the National Sciences and Engineering Research
Council of Canada for funding the work reported herein.

References
[1] Salustri F.A., “An artefact-centred framework for modelling engineering design,” Pro-

ceedings of ICED ’95, Vol. 1, The Hague, 1995, pp. 74-79.

[2] Salustri F.A., “A formal theory for knowledge-based product model representation,” 2nd

IFIP WG5.2 Workshop on Knowledge Intensive CAD, Pittsburgh, 1996, pp. 59-78.

[3] Suh N.P., “The principles of design,” Oxford University Press, New York, 1990.

[4] Roozenburg N.F.M. and Eekels J., “Product Design: Fundamentals and Methods,” John
Wiley & Sons, Chichester, 1995.

[5] Antonsson E.K. and Cagan J., “Formal Engineering Design Synthesis,” Cambridge
University Press, London, 2001.

[6] Simon H.A., “The sciences of the artificial” 2nd ed., MIT Press, Cambridge, 1981.

[7] Alexander C., Ishikawa S., and Silverstein M., “A pattern language: towns, buildings,
construction,” Oxford University Press, London, 1977.

[8] Hubka V., and Eder W.E., “Engineering design: general procedural model of engi-
neering design,” Edition Heurista, Zurich, 1992.

[9] Pugh S., “Total design: integrated methods for successful product engineering,”
Addison-Wesley, London, 1991.

[10] Park H., and Cutkosky M., “Framework for modelling dependencies in collaborative
engineering processes,” Research in Engineering Design, Vol. 11, 1999, pp.84-102.

[11] Zeng Y., and Gu P., “A science-based approach to product design theory part I: formu-
lation and formalisation of design process,” Robotics and Computer Integrated Manu-
facturing, Vol. 15, 1999, pp.331-339.

[12] McNeill T., Gero J., and Warren J., “Understanding conceptual electronic design using
protocol analysis,” Research in Engineering Design, Vol. 10, 1998, pp.129-140.

[13] Salustri F.A., “Towards a logical framework for engineering design processes,” 4th IFIP
TC5 WG5.2 Workshop on Knowledge Intensive CAD, Parma, 2000, pp. 211-226.

[14] Huang Z., “Logics for agents with bounded rationality,” Ph.D. Thesis, University of
Amsterdam, The Netherlands, 1994.

[15] French M.J., “The opportunistic route and the role of design principles,” Research in
Engineering Design, Vol. 4, 1992, pp.185-190.

[16] Masuch M., and Huang Z., “A case study in logical deconstruction: formalizing J.D.
Thompson’s Organisations in Action in a multi-agent action logic,” CCSOM Report
94-120, University of Amsterdam, The Netherlands, 1994.

[17] Lockledge J.C. and Salustri F.A., “Restructuring design communication using a design
structure matrix,” Proceedings of ICED ‘01, Vol. 1, Glasgow, 2001, pp. 27-34.

Corresponding author:
Filippo A. Salustri, PhD, P.Eng.
Ryerson University
Department of Mechanical, Aerospace, and Industrial Engineering
350 Victoria Street
Toronto, ON
M5B 2K3 Canada
Tel: 416-979-5000 x7749
Fax:416-979-5265
E-mail: salustri@ryerson.ca
URL: http://deed.ryerson.ca/~fil/

