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Abstract 
Modelling frameworks are applications which can be used to visualise complex systems 
during the design stage. They can be used to derive emergent properties of systems as well as 
providing valuable high-level system metrics. Frameworks of models facilitate the tracing of 
system properties and aspects such as design decisions. The Newcastle Engineering Design 
Centre has developed and constructed a modelling framework. Developed with early design 
conceptualisation in mind it soon became apparent that frameworks could be extended for use 
in other areas of the design processes. This paper describes the modelling framework and its 
capabilities. This scope is extended to include requirements traceability, which necessitate a 
level of documentation attached to a framework representation of a system. For future work 
we consider extending the information system to encompass the product lifecycle and suggest 
some advantages this will bring to understanding lifecycle issues such as manufacturing, 
implementation, validation and operational requirements. This direction will allow an increase 
in the transparency of the product lifecycle. The work to date has extended the uses of 
modelling frameworks to many aspects of the design process and shows that frameworks can 
be deployed throughout the lifecycle of products related to complex systems. 

Keywords: modelling frameworks, traceability, design rationale, design reuse. 

1 Introduction 
Over the last few decades, the design processes related to complex systems have become 
more difficult. This problem mainly arises from the uncertainty associated with the behaviour 
of complex systems under changing conditions. For example during the design stage of a 
system, important decisions will be made and system parameters changed. Often designers 
will attempt to optimise according to their own sets of constraints without acknowledgement 
of global consequences. When a designer is part of a large team developing complex systems, 
global performance targets will depend more on the exchange of information between the 
relevant teams of designers. The generic problem then becomes one of communication. 

A consistent approach to data management can facilitate this communication and one way of 
achieving this is through an integrated approach to modelling. Organisations involved in the 
design of complex systems often utilise many models. These models may be of varying age 
and fidelity and are intended to help design parts of a system. Often large organisations will 
have limited knowledge of the scope and capability of the models it owns. These may have 
been created a number of years beforehand by personnel who have since moved on. 
Information relating to any assumptions or the actual fidelity of the model may be uncertain, 
in some cases the original source code may be unobtainable. 
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A potential approach to integration is the use of modelling frameworks. As well as enabling a 
form of system simulation, such frameworks can be used to monitor emergent system 
properties by providing a meta-modelling environment. Emergent properties also provide a 
useful means of conducting trade-off analyses, which can optimise and make best use of 
design and manufacturing resources at the conceptual stage in the design process. This can 
also be a means of reducing development costs by using system simulation to reduce testing. 
A subsequent expectation is improved quality and reduced lead-time of designs, achieved by 
ensuring all necessary information is available early in the design process. System properties 
and other aspects such as design decisions and recorded design rationales can be traced and 
recorded; thus enabling the tracking and analysis of performance and design change. In 
conjunction with our sponsor, BAE SYSTEMS, this work has used an object-oriented 
approach to develop a modelling framework with a view to providing solutions to the 
problems in the design of complex systems. Unified Modelling Language (UML) has been 
used to describe and construct the framework, realised as a cross platform software 
application written using Java. 

1.1 Objectives and benefits 
The objectives of this work have been to obtain an understanding of areas in which modelling 
is used by developing an integrated modelling environment that can be used by designers of 
complex systems. The benefits of using such an approach is that it will assist designers to 
optimise designs and allow measurement of overall performance by considering system 
properties throughout the design hierarchy. The resulting objectives are generalised as: 
implementing a more efficient and effective use of modelling capability, permitting a 
consistent record of how systems function, creating a traceable record of the design decisions 
used, and encouraging reuse of previous design decisions in new systems. Example problems 
and solutions highlight where this approach is aimed. 

● New aircraft design are invariably more advanced than previous ones. The result is 
that new designs involve ever more interacting sub-systems and disciplines – they 
are more complex. 

● Major new projects are becoming fewer and subsequent time intervals between 
projects longer. The result is valuable design experience is becoming less available 
and in some cases lost completely. 

An integrated approach to modelling can provide the following. 

● To become a central communication tool between design disciplines in the early 
stages of design work, such that new design information is available to all parties. 

● The effects on the system of a proposed design change can be evaluated immediately 
and used to guide system synthesis. 

● New designs can benefit from a consistent record of previous designs. New designs 
rarely start from scratch, more often using previous designs as a basis. A fully 
accessible record of the design process is an obvious benefit.  

1.2 Structure of this paper 
In the next section we discuss the way in which the basic structure of the modelling 
framework has been designed and implemented as an information system. Traceability (an 
important aspect of information systems) and its implementation is discussed in Section 3. 
Using traceable information systems as a basis, Section 4 describes how these can be used to 
implement a form of design reuse implementing knowledge management (KM) techniques. 
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Future enhancements to the KM work (Section 5) includes a look at more formal means of 
recording design rationale. This will allow the capture and reuse of more advanced system 
design decisions. Section 6 is predominantly speculative, but based on work completed to 
date, and investigates the prospect of looking at lifecycle issues using the information system. 
Initially we have only been concerned with the earliest part of a product lifecycle (concept 
and design), we now look at the scope for extending this approach to embrace the overall 
lifecycle. The objective of doing this will be to improve lifecycle transparency and to utilise 
the KM techniques we have developed so far to facilitate designing for upgradeability.  

2 Modelling framework 

The modelling with which we are associated is mainly computer based, it is therefore 
reasonable to assume that a software application would be the best approach. This does not 
preclude the integration of information from other sources, for example test bed data. This 
section outlines the basic structure of the modelling framework. 

2.1 Basic structure 
The fundamental structure of the framework is an abstract container, which holds components 
representing the models being integrated. The purpose of the framework container is to: 
represent models, their associations, and properties relating to system configuration, hold and 
exchange information about a system defined by the models it represents, identify emerging 
properties, and provide a platform upon which prototype designs can be assessed. 
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Figure 1.  Conceptual view of a modelling framework. 

A conceptualised view of this is shown in Figure 1. The figure represents a number of sub-
systems forming an overall system meta-model. Each sub-system contains an arbitrary 
number of components, which each represent a model. 
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Components are place-holders for objects which deal with the modelling representation (these 
can also act as aggregations of models). These hold and transfer data, maintain links, evaluate 
models, obtain data from external sources. A view of a component and its relationship with 
the modelling domain is shown in Figure 2. 
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Figure 2.  Relationship between the physical modelling domain, highlighting a framework component. 
An engineering entity such as say, a heat exchanger may exist physically or as a proposed 
design. The important properties of either are extracted and modelled to expose the properties 
of interest. Defining the representation objects of a component requires an understanding of 
the type of information propagated through a system by the associated models. This includes: 

● functional behaviour, 

● design definitions, goals, or constraints the designer is working within, 

● structural information about an entity being modelled, and 

● any other additional information that may be deemed necessary to model the system. 

The terms behaviour and functionality are ill defined [1,2], yet a consistent definition is 
required to represent them. We therefore need to decide on terms of reference. A common 
view of behaviour and functionality is that behaviours achieve functions [3-5]. For example, 
Modarres [4] argues that complex systems can be best described by (a number of) hierarchical 
frameworks. One of these is defined as a functional hierarchy, which: ... represents the role of 
the relevant parts of the system described by its structure. If components are the relevant parts 
of a system then the functionality of a component is its role or purpose. Behaviour is defined 
as the way that a purpose (or a function) is achieved [3,4], i.e. behaviour is how an object acts 
or reacts, in terms of its state changes, so as to attain its intended function [4]. These views are 
utilised within the framework such that: function describes the purpose of a component, and 
behaviour is the way that purpose is achieved [3]. Design definitions may be regarded as 
goals, i.e. as a subjective motive of a system or its components [4]. The relationship between 
functions and goals are described by the following: To attain a goal, one needs a collection of 
functions to be realised [4]. These constraints may then be taken as a measure of success or 
failure for a function. Models of an entity will often consist of behaviour and functionality. 
However the system properties may require further information. For example, the behaviour 
and functionality of a heat exchanger, say, may be successfully modelled without any 
reference to other attributes, such as size, mass or cost. Yet these may be required to derive 
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the emerging properties of a complete system. Conceptually the modelling framework is an 
information meta-model, designed to support prototype system designs described by means of 
system properties. In support of this we have constructed this as an object oriented 
information model. 

2.2 Class diagram 
The fundamental notion in object-oriented design is that of an object, where “an object is an 
abstraction of the real world that captures a set of variables that correspond to actual real 
world behaviour” [6]; a definition, which captures the essential principles we are attempting 
to emulate. As Rumbaugh [7] states “the essence of object-oriented development is the 
identification and organization of application-domain concepts ...”. In keeping with this ideal, 
the structure of the framework meta-model and its constituent parts should be concisely 
described and explained. An information modelling language such as UML is a good 
candidate for this task [7]. To do this successfully the framework model as we have described 
it so far has been described as a series of classes. 
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Figure 3.  The main class diagram for the framework. 

The class diagram for the framework (Figure 3) shows a component can contain zero or more 
abstract objects (representing the structural, goal, functional and behavioural objects). In turn 
each of these objects can hold zero or more property objects. The inclusion of a state class 
allows a component to be dynamically changed so that it can represent different models. The 
main attributes of the Property class are the property identifier and any expression or 
functional list associated with a property. This is so that a property may be expressed in terms 
of its functional relationships. For example: 

force = mass * acceleration, as: force = Φ(mass, acceleration). 

The class diagram shows that as well as being referenced from a represented model, a 
property may also refer to other property objects from any associated component. 

2.3 Data transfer 
A view of data transfer between a represented model and the framework is shown in Figure 4. 
This figure highlights three distinctive forms of transfer. The first is between objects held by a 
component. The second is between components, but within a framework (which represents 
the integration between models). Finally the most significant is between the framework and 
the modelling domain. Information interaction between objects and the modelling domain 
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requires formally defined associations. In particular this type of data transfer requires a 
neutral data exchange format. An emerging standard is Application Protocol (AP) 233, 
Systems engineering data representation developed within the ISO STEP context (ISO 
10303). This standard is specifically of interest since as well as being firmly aimed at avionics 
and airframe systems, it sets out to define within the scope of ISO 10303 such discipline 
views as: 

● definitions between interacting systems, 

● support of hierarchical break down and object-oriented modelling techniques, 

● functional and non functional requirements of a system in each lifecycle phase, and 

● the definition of static and dynamic behaviour of a system. 

Data
output

Structural
Information

Goals /
Design Defs

Functions

BehaviourBehaviour

Component

Modelling Framework Representation
Neutral or Common

Data Format

Connections
to other
framework
components

External
Model

Data
interface

Figure 4.  View of data transfer between domains. 

3 Traceability 
The framework permits tracing of represented entities, such as properties. For example the 
mass of an engine may be critical to a system design. By tracing a property through a 
represented system, low level contributing properties can be determined. This information can 
allow designers to target their efforts and can also be used to test the sensitivity of properties 
and estimate the required fidelity of integrated models. A typical sensitivity trace may show 
that a low fidelity model (i.e. a cheaper model) is all that is required to simulate a system. 
Whereas another trace may identify where an increase in model fidelity is needed. 

3.1 Methods and approaches 
To perform a trace requires some relationship between at least two entities, and this 
relationship may take the form of a syntactic or semantic nature [8]. A number of types of 
models within which tracing process can operate have been identified: 

● information models, 

● process models, 

● documentation models, and  

● enterprise models. 
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The model we use is an information model. The potential to include other models, such as the 
documentation model, remains an option. In relation to syntactic traceability the rigour 
referred to by Pearson [9] is that of a functional nature, which is how the relationship between 
properties is described in the framework meta-model, however given other matching criteria, 
other objects can be traced. Using the above example of the mass of an engine sub-system, 
tracing the contributing parts of that mass may be considered a downward trace. An 
alternative is to perform a trace from a low level property upwards through a system to 
identify which emerging properties it influences. 

Figure 5 shows a simple example of a downward trace. The ‘Result’ object, shown in the top 
left of the figure, contains an emerging property ‘force’. This property is the product of other 
properties distributed within connected objects. The result of the trace on this property is 
displayed using a tree structure (right of the figure). This displays all contributing properties 
down to the lowest level. The tree root is the title of the property being traced. Each branch in 
the tree is indicative of some functional relationship, i.e. the syntactic relationship between 
the properties. The tree in Figure 5 shows that in ‘Result’ the property ‘force’ is a function of 
‘o1.m’ and ‘o2.a’. In turn in ‘Object o1’, ‘o1.m’ is a function of ‘rho’ and ‘vol’. The 
rightmost leaves represent the low level properties, that contribute to the traced property. This 
example shows the low level properties, which make up ‘force’ in ‘Result’ are ‘o1.rho, o1.vol, 
o2.v2, o2.v1 and o3.time’. 

 Result (r)
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Figure 5.  Downward trace tree. 

3.2 Implementing traceability within a framework 
The overall tracing process can be described using three stages [10]: 

● formulation of a data structure, 

● population of the data structure, and 

● the tracing process itself, which searches the populated data structure. 

These follow the Executable UML approach advocated by Mellor [11]. The class diagram 
describing the tracing data structure is shown in Figure 6. This is the template populated by 
properties during a trace. The search processes then operate on this to produce the trace tree. 

The primary data container is a hashtable utilising two main methods, put() and get(). The put 
method requires two parameters, which reference objects, these are a key and some content. 
The method uses a unique key to place a content object within the container. Once stored the 
get() method when given the unique key will retrieve a reference to the stored content object 
from the container. The two classes which inherit the hash table characteristics (shown in the 
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figure) are PropertyTrace and TraceRecord. PropertyTrace is the fundamental class used in 
the tracing process and contains two main methods: constructData() which actually assembles 
the data and doSearch() which performs the searching process. As a container the data objects 
placed in this are an aggregation of a key and some content. The key object is a string that 
uniquely identifies an object in the form of: 

component Title+”:”+objectTitle+“:”+prefix. 
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Figure 6.  Class diagram describing the data structure. 

The content object of this class, titled TraceRecord is itself an extension of the hash table 
class and is a container for data objects that have a unique key, which references the 
properties held by a framework object. The content held within this data object is a simple 
array of parameters attributed to the property, for example: 

y = a * b / c, can be referred to as: y = Φ(a, b, c), 

where y is the property and the parameters are a, b, and c. The class diagram in effect 
describes a nested hash table, the basic PropertyTrace class holds objects where the key is a 
unique identifier for all the objects in a framework and these hold a content object 
TraceRecord. This provides a very generic tracing structure, which can be applied to any 
linked entities. 

4 Knowledge capture and the reuse of designs  
A desirable aspect of designing systems using a framework is to be able to trace and 
potentially reuse stored design decisions. To achieve this requires a view of how design 
decisions are made and recorded so that knowledge within a tested and validated design can 
be stored, traced and potentially reused. We begin by discussing how designs can be 
represented, followed by a consideration of how the ontology of a framework may be defined 
and how this can utilise Problem Solving Methods (PSM’s). 

4.1 Capturing the design process 
The design process involves mappings from the design space specifications to a space of 
devices or components [12]. This is conducted by means of a search within the space of 
possible subassemblies of components for those that satisfy a set of constraints. To achieve a 
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solution the design problem solving process can be subdivided into a number of subtasks. A 
task structure lays out the relationship between a task, methods for solving the task and 
knowledge requirements for the methods [12]. A design task can be defined as [12]: 

● a set of functions to be delivered by an artefact, including a set of constraints which 
must be satisfied, and 

● a relevant technology, that is a repertoire of components (assumed to be available) 
and a vocabulary of relations between the components. 

A design solution consists of a complete specification of a set of components and their 
relations that together describe an artefact that delivers the required functionality and satisfies 
the constraints. The most relevant object held by a component in relation to a design is the 
functional object; as previously stated functions describe what an object does and this 
represents the role of the relevant part of a structure. Therefore a framework using functional 
representation satisfies the requirement that a design can be specified by a set of functions. 
The constraints can be achieved using the goal object, also included within a framework 
component. As we have stated: goals may also be described as design definitions in that a 
designer may specify some limit or value that a function must reach [13]. The technology, or 
the vocabulary of the system representation is already present in the form of an ontology 
(described below). Central to the ontology are that the components, objects and associations 
are a representation of the system design. This also implies that the system being represented 
is either a conceptual or existing system being portrayed as the designer intends it to be, i.e. 
the framework contains a representation of the design decisions that have gone into the 
creation of the system. 

4.2 Ontology 
The purpose of an ontology is to capture domain knowledge in a generic way and provide a 
commonly agreed understanding of a domain [14], which may be reused and shared across a 
number of applications and groups. In practice an ontology is a hierarchically structured set of 
terms for describing a domain that can be used as a foundation for a knowledge base [15]. 
This ontological requirement is met by the structure of the modelling framework as an 
information system. Although we do not have a formal language for the framework, its 
storage as an XML file defined by a DTD file fulfils this requirement. Swartout [15] 
generalises that: “Large scale knowledge based systems are difficult and expensive to 
construct. If we could share knowledge across systems, costs would be reduced. However, 
because knowledge bases are typically constructed from scratch, each with their own 
idiosyncratic structure, sharing is difficult. Recent research has focused on the use of 
ontologies to promote sharing”. The use of XML with this application clearly solves the 
issues of sharing information and compatibility with other applications [15] and is based on 
the design of the underlying structure of the modelling framework. 

4.3 Problem solving methods 
The term Problem Solving Method (PSM) describes the reasoning process of a knowledge 
based system (KBS) [14]. A PSM defines and encapsulates how to achieve the goal of a task. 
The form of a PSM may differ between applications, however in general a PSM describes 
which reasoning steps have to be performed and the type of domain knowledge needed to 
perform a task. PSM’s provide the abstract procedures required for solving tasks. They are 
arranged to utilise the available ontology which describes how a problem will be solved. In 
other words, a PSM encapsulates a solution to a problem (that has already been defined and 
solved) in the method ontology. A potential architecture for a PSM [16] is shown in Figure 7. 
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This shows that the heart of a PSM consists of a hierarchical structure of inference steps. Each 
step can consist of solutions to sub-tasks which themselves are solved by (sub) PSM’s. 
Referring to Figure 7, a PSM can be described by the following three parts [16]: 

● functional specifications, 

● operational specifications, and 

● requirements. 
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operational specification
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inferences
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functional 
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domain knowledge

operational specification

inf1role1 inf2role2 role3

inferences
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is realised by

uses

satisfied by

Goal

Task/Function

Method

Figure 7.  An architecture for a Problem Solving Method [16]. 

The functional specifications of a PSM describe the tasks it can accomplish. Whether these 
tasks are achieved or not is measured by an appropriate set of goals. In relation to the 
modelling framework we have functional and goal objects, which are used to describe these 
aspects and functionality can be tested against one or more goal objects. Both the functional 
and goal objects within the framework can also be formed into a hierarchical structure from 
other functional and goal objects. If we take a closer look at an atomic inference this may be 
considered a singular reasoning step, which has input information supplied by an input role 
and output information (based on whatever that reasoning step did) supplied to an output role. 
An atomic inference (or reasoning step) can be represented by a component as used in the 
modelling framework. As part of a system simulated by a number of interconnected 
components a single component may be considered a reasoning step. The input and output 
roles also form a similarity with the inputs and outputs from a component. Although 
components do not exchange data, the objects they contain do and this data can be taken from 
(or sent to) models or other objects within a framework. Combining components together then 
replicates a hierarchy of inferences, which form the operational specification of a PSM. 

4.4 Implementing design reuse with a framework 
Designs represented by frameworks may be viewed as successful cases. If so, the information 
they hold is useful when designing a new system from scratch. The basis of this is that once a 
particular problem has been solved, this solution serves as a potential solution to a new 
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problem, which approximates the original problem. The normal approach to the storage of 
PSM’s for design reuse is to arrange these in libraries and this raises a number of issues [14]. 
An alternate approach that we use is to regard the storage of frameworks as a virtual library of 
PSM’s. This makes use of the tracing capabilities developed with this framework. If we 
consider a system being described by an electronic store of a number of frameworks, then for 
a given problem (defined by a set of functional requirements) we can search this store for 
matches. The search takes place on the functional objects held by the frameworks. Once 
found, the tracing capability is deployed to find all components (inference steps), which 
contribute to this functionality. When this process is completed we have a set of matched 
functional capabilities, that includes the contributing inferences. In other words a PSM, as 
described by the architecture in Section 4.3. This then becomes a potential solution to a new 
design problem. 

5 Recording design rationale 
The modelling framework representation has been designed and built as a means of 
integrating modelling capability. Its primary purpose is to demonstrate (at the conceptual 
stage of the design cycle) the way a system operates. Properties can be exchanged with other 
model representations via editable links and it is this which helps to simulate a systems 
capability. An extensive amount of other pieces of information can also be held within this 
arrangement. This can be in the form of textual descriptions, links to external documentation, 
unit data, version information and authorship as well as many other types. Two methods of 
manipulating the data held by the framework have been added, that is bi-directional tracing 
and a means of retrieving “tacit” knowledge stored in the frameworks. As described in 
previous sections, this forms a traceable (and searchable) design knowledge store, as well as 
an effective modelling database and repository. To make better use of traceability and 
knowledge management, a more formal record of design is required in some standardised 
form of documented design rationale. 

To achieve this requires the capture of design rationale, which can be accomplished using 
requirements management methods. Since the design process is heavily dependent on 
experience it is this experience that the design rationale will have to capture. This will 
therefore act as a record that can be used by other designers in the future or by inexperienced 
designer as part of a learning process. Many of the ideas related to design rationale also 
include traceability, since it is in the interest of designers to be able to trace the reasons why a 
particular choice of design has been made. These approaches consider what should be 
recorded in such a way that these types of traces can be implemented. A number of 
approaches have been identified, including: a method based on rich traceability and one based 
on requirements management. In each some form of documentation is associated with the 
method. The first method also utilises a flowchart of design rationales between a users 
requirement and what the requirements of the system are. The rationales simply plot the 
designers’ path between these. This also exists in parallel with a large document base which 
records all relevant information. 

Currently we have not implemented a way of recording a flowchart of design rationales. 
Essentially these items would be the system requirements. Therefore to implement such an 
approach a flowchart facility would be needed. Another view is that goal objects, contained 
by a component can be used to specify system requirements. The functional and behavioural 
objects can contain the relevant information required to attain these goals. If the parts of a 
represented system contain references to relevant documentation then it will be relatively easy 
to extend the concept of this framework toward the documentation model and also the 
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responsibility model and change control. To investigate design rationale it is probably most 
important to regard what a design engineer does and thinks. Research in this field has 
identified how experienced designers think and record what they do, prior to arranging this in 
the form of a design framework that novice designers could adhere to [17]. In theory this 
helps novice designers to think and act more like experienced designers. The main aspects 
exhibited by experienced designers are, they: will try to identify many more of the issues than 
a novice designer, be aware of the reason why something was done, will refer to past designs 
as starting points for new designs, question if something is worth pursuing, question the 
validity of data, keep options open, be aware of trade-offs, and be aware of limitations. A 
good record of design rationale will therefore have to be able to demonstrate these points and 
this will give a definite direction for the progression of the MFR as a design tool in this area. 
What an experienced designer has is experience and if a novice designer can be supplied with 
the benefit of someone else’s experience then this will address this issue. This is therefore the 
type of functionality that an extended MFR would be expected to fulfil. 

6 Extending the range of application 

Having looked at the basic modelling framework, created for the early design stage of 
systems, this section considers the implications of extending these ideas further. Many aspects 
of design now attempt to fully consider the entire lifecycle of a product. Addressing these 
lifecycle issues can be beneficial from the point of view of increased design flexibility and 
allow insight into the potential for increasing the upgradeability of designs. To help achieve 
this, it is proposed that the approach we have used so far can be extended further into the 
lifecycle of a product. This section considers some of the issues relevant to this and discusses 
the implications. 

6.1 Lifecycle issues 
Historically, traditional designs have paid little attention to the later parts of the lifecycle. This 
is understandable because such issues are not of immediate importance to most designers. 
One exception to this is manufacturing, but other issues that are often related to maintenance 
and end of life issues are frequently neglected. It is generally accepted that in future most 
design engineers will need to consider all aspects of the design lifecycle. This is not just a 
case of optimising a design or making a design more cost effective but means a more holistic 
view of the cost of a product throughout its lifecycle, involving the total cost of ownership. In 
future, aspects such as this will more often be a matter of legislation [18]. In general what is 
required is an increase in the transparency to the designer of the: 

 ● manufacturing costs 

 ● maintenance costs, and 

 ● termination or end of life (scrap) costs. 

What we have developed so far can be extended such that a deeper insight into these lifecycle 
issues can be achieved. Currently what we have is intended for use in the earliest stage in the 
lifecycle, that is the conceptual design. To increase this further will require a more complete 
understanding of the following stages: manufacturing, supportability, cost, implementation, 
validation, and operational requirements. In effect this means all aspects of the lifecycle from 
initial concept to final disposal. The result will be an increase in the overall transparency of 
the product lifecycle. The benefits that would accrue from this approach would include: 
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improvement of product quality, concurrency of product and process phases and an overall 
reduction in development time. 
 

Figure 8.  Design freedom in the early stage of design. 
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, we see that in the initial design stage design 
arbitrary 100%, but quickly falls as the design progresses into the detailed stages. The 
objective of the modelling framework, is to lift this freedom thus allowing more flexibility in 
design. Extension of the modelling framework into the later stages of the lifecycle will 
produce an even greater flexibility into the design stage by increasing the transparency. Thus 
allowing system designers more extended views of their design consequences. 

One of the aspects discussed earlier was that of storin
knowledge accrued by the system designer available for reuse. Another view of this is that of 
using the information system as a legacy utility. This is also linked to upgradeability which 
requires flexibility in the design of a system. As we saw in Figure 8, an increase in flexibility 
is one of the aims of the current approach. 

Figure 9.  Facilitating the upgradeability of a system design. 
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If we consider this further we can see that knowledge of a design is also linked to flexibility 

nd knowledge levels. Often a design will be in 

7 Conclusion and discussion 
o help provide solutions to the ever growing problems 
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(Figure 9). That is the decrease in design freedom sees a corresponding increase in 
knowledge. The overall aim is to lift these levels using tools such as the modelling 
framework, and Figure 9 also indicates that by implementing design reuse we can lift the level 
of knowledge at an earlier stage in the design. 

Upgradeability is closely linked to flexibility a
operation for a number of years before an upgrade is considered. It is also extremely difficult 
to design with upgradeability in mind, since technology will advance and the scope of any 
future upgrade must be generally unknown to the designer. Therefore by increasing the levels 
of design freedom and knowledge this will give greater scope to the issue of upgradeability. 
This will also be facilitated by using the modelling framework as a fully integrated 
information system, which can track and monitor changes as well as giving some indication 
of the knock-on effects as far as later lifecycle issues are concerned. 

Modelling frameworks are being used t
of designing complex systems. We have presented our approach to this in the form of a basic 
modelling framework, which can represent a wide variety of computer based models, trace 
properties produced by those models and be used as a basis for design reuse. This is in a form 
designers of systems can use to view the relevant systems information they need. 

The design of the modelling framework application (written using the Java p
language) has been modelled using an object oriented approach. Designing the framework 
using UML has provided a flexible approach that can be easily adapted and extended into 
other areas of design use. This flexibility is important to extending the current version to 
enable it to capture and record design rationale. More importantly this versatility can be 
utilised to expand use of the modelling framework into areas relevant to the product lifecycle. 
The view of the lifecycle issues discussed with respect to the capabilities of our approach with 
frameworks, show that the scope exists for such expansions. When implemented, this will 
give a more transparent view of the lifecycle to the designer and will help enable future 
designs to be made with upgradeability in mind. 
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