
INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN

ICED 05 MELBOURNE, AUGUST 15 – 18, 2005

EXTENDING THE DESIGN OPPORTUNITIES AFFORDED BY
MODELLING FRAMEWORKS

J A Dalton, P W Norman, P Sen, S Whittle

Abstract
Modelling frameworks are applications which can be used to visualise complex systems
during the design stage. They can be used to derive emergent properties of systems as well as
providing valuable high-level system metrics. Frameworks of models facilitate the tracing of
system properties and aspects such as design decisions. The Newcastle Engineering Design
Centre has developed and constructed a modelling framework. Developed with early design
conceptualisation in mind it soon became apparent that frameworks could be extended for use
in other areas of the design processes. This paper describes the modelling framework and its
capabilities. This scope is extended to include requirements traceability, which necessitate a
level of documentation attached to a framework representation of a system. For future work
we consider extending the information system to encompass the product lifecycle and suggest
some advantages this will bring to understanding lifecycle issues such as manufacturing,
implementation, validation and operational requirements. This direction will allow an increase
in the transparency of the product lifecycle. The work to date has extended the uses of
modelling frameworks to many aspects of the design process and shows that frameworks can
be deployed throughout the lifecycle of products related to complex systems.

Keywords: modelling frameworks, traceability, design rationale, design reuse.

1 Introduction
Over the last few decades, the design processes related to complex systems have become
more difficult. This problem mainly arises from the uncertainty associated with the behaviour
of complex systems under changing conditions. For example during the design stage of a
system, important decisions will be made and system parameters changed. Often designers
will attempt to optimise according to their own sets of constraints without acknowledgement
of global consequences. When a designer is part of a large team developing complex systems,
global performance targets will depend more on the exchange of information between the
relevant teams of designers. The generic problem then becomes one of communication.

A consistent approach to data management can facilitate this communication and one way of
achieving this is through an integrated approach to modelling. Organisations involved in the
design of complex systems often utilise many models. These models may be of varying age
and fidelity and are intended to help design parts of a system. Often large organisations will
have limited knowledge of the scope and capability of the models it owns. These may have
been created a number of years beforehand by personnel who have since moved on.
Information relating to any assumptions or the actual fidelity of the model may be uncertain,
in some cases the original source code may be unobtainable.

1

A potential approach to integration is the use of modelling frameworks. As well as enabling a
form of system simulation, such frameworks can be used to monitor emergent system
properties by providing a meta-modelling environment. Emergent properties also provide a
useful means of conducting trade-off analyses, which can optimise and make best use of
design and manufacturing resources at the conceptual stage in the design process. This can
also be a means of reducing development costs by using system simulation to reduce testing.
A subsequent expectation is improved quality and reduced lead-time of designs, achieved by
ensuring all necessary information is available early in the design process. System properties
and other aspects such as design decisions and recorded design rationales can be traced and
recorded; thus enabling the tracking and analysis of performance and design change. In
conjunction with our sponsor, BAE SYSTEMS, this work has used an object-oriented
approach to develop a modelling framework with a view to providing solutions to the
problems in the design of complex systems. Unified Modelling Language (UML) has been
used to describe and construct the framework, realised as a cross platform software
application written using Java.

1.1 Objectives and benefits
The objectives of this work have been to obtain an understanding of areas in which modelling
is used by developing an integrated modelling environment that can be used by designers of
complex systems. The benefits of using such an approach is that it will assist designers to
optimise designs and allow measurement of overall performance by considering system
properties throughout the design hierarchy. The resulting objectives are generalised as:
implementing a more efficient and effective use of modelling capability, permitting a
consistent record of how systems function, creating a traceable record of the design decisions
used, and encouraging reuse of previous design decisions in new systems. Example problems
and solutions highlight where this approach is aimed.

● New aircraft design are invariably more advanced than previous ones. The result is
that new designs involve ever more interacting sub-systems and disciplines – they
are more complex.

● Major new projects are becoming fewer and subsequent time intervals between
projects longer. The result is valuable design experience is becoming less available
and in some cases lost completely.

An integrated approach to modelling can provide the following.

● To become a central communication tool between design disciplines in the early
stages of design work, such that new design information is available to all parties.

● The effects on the system of a proposed design change can be evaluated immediately
and used to guide system synthesis.

● New designs can benefit from a consistent record of previous designs. New designs
rarely start from scratch, more often using previous designs as a basis. A fully
accessible record of the design process is an obvious benefit.

1.2 Structure of this paper
In the next section we discuss the way in which the basic structure of the modelling
framework has been designed and implemented as an information system. Traceability (an
important aspect of information systems) and its implementation is discussed in Section 3.
Using traceable information systems as a basis, Section 4 describes how these can be used to
implement a form of design reuse implementing knowledge management (KM) techniques.

2

Future enhancements to the KM work (Section 5) includes a look at more formal means of
recording design rationale. This will allow the capture and reuse of more advanced system
design decisions. Section 6 is predominantly speculative, but based on work completed to
date, and investigates the prospect of looking at lifecycle issues using the information system.
Initially we have only been concerned with the earliest part of a product lifecycle (concept
and design), we now look at the scope for extending this approach to embrace the overall
lifecycle. The objective of doing this will be to improve lifecycle transparency and to utilise
the KM techniques we have developed so far to facilitate designing for upgradeability.

2 Modelling framework

The modelling with which we are associated is mainly computer based, it is therefore
reasonable to assume that a software application would be the best approach. This does not
preclude the integration of information from other sources, for example test bed data. This
section outlines the basic structure of the modelling framework.

2.1 Basic structure
The fundamental structure of the framework is an abstract container, which holds components
representing the models being integrated. The purpose of the framework container is to:
represent models, their associations, and properties relating to system configuration, hold and
exchange information about a system defined by the models it represents, identify emerging
properties, and provide a platform upon which prototype designs can be assessed.

Model

Model

Model

Model

Model

Model

Model

Model

Model

Model

ex
te

rn
al

 d
at

a
in

pu
ts

ex
te

rn
al

 d
at

a
in

pu
ts

external data inputs

Model

Modelling framework
(product system)

Product sub-system

Component

External model

Data transfer
(association)

KEY:
Emerging Properties

Model

Model

Model

Model

Model

Model

Model

Model

Model

Model

ex
te

rn
al

 d
at

a
in

pu
ts

ex
te

rn
al

 d
at

a
in

pu
ts

external data inputs

Model

Modelling framework
(product system)

Product sub-system

Component

External model

Data transfer
(association)

KEY:

ModelModel

Modelling framework
(product system)

Product sub-system

Component

External model

Data transfer
(association)

KEY:
Emerging Properties

Figure 1. Conceptual view of a modelling framework.

A conceptualised view of this is shown in Figure 1. The figure represents a number of sub-
systems forming an overall system meta-model. Each sub-system contains an arbitrary
number of components, which each represent a model.

3

Components are place-holders for objects which deal with the modelling representation (these
can also act as aggregations of models). These hold and transfer data, maintain links, evaluate
models, obtain data from external sources. A view of a component and its relationship with
the modelling domain is shown in Figure 2.

Modelling DomainModelling Domain

Physical DomainPhysical Domain

Fuel Pump

Framework Component
Representing Fuel Pump
Framework Component
Representing Fuel Pump

Various objects
making up the
structure of a
component

physical domain
information used by
modeller

other physical domain
information included
in framework

modelling
information
used by
framework

External Model
(Computer Based)

External Model
(Computer Based)

Models
selected
aspects of
the physical
entity

Figure 2. Relationship between the physical modelling domain, highlighting a framework component.
An engineering entity such as say, a heat exchanger may exist physically or as a proposed
design. The important properties of either are extracted and modelled to expose the properties
of interest. Defining the representation objects of a component requires an understanding of
the type of information propagated through a system by the associated models. This includes:

● functional behaviour,

● design definitions, goals, or constraints the designer is working within,

● structural information about an entity being modelled, and

● any other additional information that may be deemed necessary to model the system.

The terms behaviour and functionality are ill defined [1,2], yet a consistent definition is
required to represent them. We therefore need to decide on terms of reference. A common
view of behaviour and functionality is that behaviours achieve functions [3-5]. For example,
Modarres [4] argues that complex systems can be best described by (a number of) hierarchical
frameworks. One of these is defined as a functional hierarchy, which: ... represents the role of
the relevant parts of the system described by its structure. If components are the relevant parts
of a system then the functionality of a component is its role or purpose. Behaviour is defined
as the way that a purpose (or a function) is achieved [3,4], i.e. behaviour is how an object acts
or reacts, in terms of its state changes, so as to attain its intended function [4]. These views are
utilised within the framework such that: function describes the purpose of a component, and
behaviour is the way that purpose is achieved [3]. Design definitions may be regarded as
goals, i.e. as a subjective motive of a system or its components [4]. The relationship between
functions and goals are described by the following: To attain a goal, one needs a collection of
functions to be realised [4]. These constraints may then be taken as a measure of success or
failure for a function. Models of an entity will often consist of behaviour and functionality.
However the system properties may require further information. For example, the behaviour
and functionality of a heat exchanger, say, may be successfully modelled without any
reference to other attributes, such as size, mass or cost. Yet these may be required to derive

4

the emerging properties of a complete system. Conceptually the modelling framework is an
information meta-model, designed to support prototype system designs described by means of
system properties. In support of this we have constructed this as an object oriented
information model.

2.2 Class diagram
The fundamental notion in object-oriented design is that of an object, where “an object is an
abstraction of the real world that captures a set of variables that correspond to actual real
world behaviour” [6]; a definition, which captures the essential principles we are attempting
to emulate. As Rumbaugh [7] states “the essence of object-oriented development is the
identification and organization of application-domain concepts ...”. In keeping with this ideal,
the structure of the framework meta-model and its constituent parts should be concisely
described and explained. An information modelling language such as UML is a good
candidate for this task [7]. To do this successfully the framework model as we have described
it so far has been described as a series of classes.

Framework

Model

Model Type
Location
Author
Owner
Date
Version

11 1

linked to 0 or
more objects

1 .. * 0 .. *

0 .. *

has access to model outputs

0 .. *

0 .. 1

Information

Project
Author
Date
Description

State

Description

0 .. *

Component

Title
Current state

has access to other
properties within
the parent object &
linked objects

Object (Generic)

Type
Title
Prefix

Property

Identifier
hasExpr
Expression
Functional List

*

<< calls >>

<< calls >>

Framework

Model

Model Type
Location
Author
Owner
Date
Version

11 1

linked to 0 or
more objects

1 .. * 0 .. *

0 .. *

has access to model outputs

0 .. *

0 .. 1

Information

Project
Author
Date
Description

State

Description

0 .. *

Component

Title
Current state

has access to other
properties within
the parent object &
linked objects

Object (Generic)

Type
Title
Prefix

Property

Identifier
hasExpr
Expression
Functional List

*

<< calls >>

<< calls >>

Figure 3. The main class diagram for the framework.

The class diagram for the framework (Figure 3) shows a component can contain zero or more
abstract objects (representing the structural, goal, functional and behavioural objects). In turn
each of these objects can hold zero or more property objects. The inclusion of a state class
allows a component to be dynamically changed so that it can represent different models. The
main attributes of the Property class are the property identifier and any expression or
functional list associated with a property. This is so that a property may be expressed in terms
of its functional relationships. For example:

force = mass * acceleration, as: force = Φ(mass, acceleration).

The class diagram shows that as well as being referenced from a represented model, a
property may also refer to other property objects from any associated component.

2.3 Data transfer
A view of data transfer between a represented model and the framework is shown in Figure 4.
This figure highlights three distinctive forms of transfer. The first is between objects held by a
component. The second is between components, but within a framework (which represents
the integration between models). Finally the most significant is between the framework and
the modelling domain. Information interaction between objects and the modelling domain

5

requires formally defined associations. In particular this type of data transfer requires a
neutral data exchange format. An emerging standard is Application Protocol (AP) 233,
Systems engineering data representation developed within the ISO STEP context (ISO
10303). This standard is specifically of interest since as well as being firmly aimed at avionics
and airframe systems, it sets out to define within the scope of ISO 10303 such discipline
views as:

● definitions between interacting systems,

● support of hierarchical break down and object-oriented modelling techniques,

● functional and non functional requirements of a system in each lifecycle phase, and

● the definition of static and dynamic behaviour of a system.

Data
output

Structural
Information

Goals /
Design Defs

Functions

BehaviourBehaviour

Component

Modelling Framework Representation
Neutral or Common

Data Format

Connections
to other
framework
components

External
Model

Data
interface

Figure 4. View of data transfer between domains.

3 Traceability
The framework permits tracing of represented entities, such as properties. For example the
mass of an engine may be critical to a system design. By tracing a property through a
represented system, low level contributing properties can be determined. This information can
allow designers to target their efforts and can also be used to test the sensitivity of properties
and estimate the required fidelity of integrated models. A typical sensitivity trace may show
that a low fidelity model (i.e. a cheaper model) is all that is required to simulate a system.
Whereas another trace may identify where an increase in model fidelity is needed.

3.1 Methods and approaches
To perform a trace requires some relationship between at least two entities, and this
relationship may take the form of a syntactic or semantic nature [8]. A number of types of
models within which tracing process can operate have been identified:

● information models,

● process models,

● documentation models, and

● enterprise models.

6

The model we use is an information model. The potential to include other models, such as the
documentation model, remains an option. In relation to syntactic traceability the rigour
referred to by Pearson [9] is that of a functional nature, which is how the relationship between
properties is described in the framework meta-model, however given other matching criteria,
other objects can be traced. Using the above example of the mass of an engine sub-system,
tracing the contributing parts of that mass may be considered a downward trace. An
alternative is to perform a trace from a low level property upwards through a system to
identify which emerging properties it influences.

Figure 5 shows a simple example of a downward trace. The ‘Result’ object, shown in the top
left of the figure, contains an emerging property ‘force’. This property is the product of other
properties distributed within connected objects. The result of the trace on this property is
displayed using a tree structure (right of the figure). This displays all contributing properties
down to the lowest level. The tree root is the title of the property being traced. Each branch in
the tree is indicative of some functional relationship, i.e. the syntactic relationship between
the properties. The tree in Figure 5 shows that in ‘Result’ the property ‘force’ is a function of
‘o1.m’ and ‘o2.a’. In turn in ‘Object o1’, ‘o1.m’ is a function of ‘rho’ and ‘vol’. The
rightmost leaves represent the low level properties, that contribute to the traced property. This
example shows the low level properties, which make up ‘force’ in ‘Result’ are ‘o1.rho, o1.vol,
o2.v2, o2.v1 and o3.time’.

 Result (r)
force = m * a

Trace for: force

r.force

o1.m
o1.rho
o1.vol

o2.a
o2.v2
o2.v1

o3.time
o3.time

Object (o1)
m = rho * vol

Object (o2)
a = (v2-v1)/o3.time

Object (o3)
time = 5

force = o1.m * o2.a
Result (r)
force = m * a

Trace for: force

r.force

o1.m
o1.rho
o1.vol

o2.a
o2.v2
o2.v1

o3.time
o3.time

Trace for: force

r.force

o1.m
o1.rho
o1.vol

o2.a
o2.v2
o2.v1

o3.time
o3.time

Object (o1)
m = rho * vol

Object (o2)
a = (v2-v1)/o3.time

Object (o3)
time = 5

force = o1.m * o2.a

Figure 5. Downward trace tree.

3.2 Implementing traceability within a framework
The overall tracing process can be described using three stages [10]:

● formulation of a data structure,

● population of the data structure, and

● the tracing process itself, which searches the populated data structure.

These follow the Executable UML approach advocated by Mellor [11]. The class diagram
describing the tracing data structure is shown in Figure 6. This is the template populated by
properties during a trace. The search processes then operate on this to produce the trace tree.

The primary data container is a hashtable utilising two main methods, put() and get(). The put
method requires two parameters, which reference objects, these are a key and some content.
The method uses a unique key to place a content object within the container. Once stored the
get() method when given the unique key will retrieve a reference to the stored content object
from the container. The two classes which inherit the hash table characteristics (shown in the

7

figure) are PropertyTrace and TraceRecord. PropertyTrace is the fundamental class used in
the tracing process and contains two main methods: constructData() which actually assembles
the data and doSearch() which performs the searching process. As a container the data objects
placed in this are an aggregation of a key and some content. The key object is a string that
uniquely identifies an object in the form of:

component Title+”:”+objectTitle+“:”+prefix.

DataObject

key: Object
content: Object

ObjectID

component Title
object Title
prefix

DataObject

key: Object
content: Object

PropertyID

propertyID

TraceRecord

getLinkedObjects()
putLinkedObjects()

PropertyTrace

constructData()
doSearch()

Hashtable

put(key,content)
get(key)

LinkedObjects: List

objectID’s

Parameters: List

parameters

0..*

0..*

key

key

content

content

List of linked
objects

DataObject

key: Object
content: Object

DataObject

key: Object
content: Object

ObjectID

component Title
object Title
prefix

ObjectID

component Title
object Title
prefix

DataObject

key: Object
content: Object

DataObject

key: Object
content: Object

PropertyID

propertyID

PropertyID

propertyID

TraceRecord

getLinkedObjects()
putLinkedObjects()

TraceRecord

getLinkedObjects()
putLinkedObjects()

PropertyTrace

constructData()
doSearch()

PropertyTrace

constructData()
doSearch()

Hashtable

put(key,content)
get(key)

Hashtable

put(key,content)
get(key)

LinkedObjects: List

objectID’s

LinkedObjects: List

objectID’s

Parameters: List

parameters

Parameters: List

parameters

0..*

0..*

key

key

content

content

List of linked
objects

Figure 6. Class diagram describing the data structure.

The content object of this class, titled TraceRecord is itself an extension of the hash table
class and is a container for data objects that have a unique key, which references the
properties held by a framework object. The content held within this data object is a simple
array of parameters attributed to the property, for example:

y = a * b / c, can be referred to as: y = Φ(a, b, c),

where y is the property and the parameters are a, b, and c. The class diagram in effect
describes a nested hash table, the basic PropertyTrace class holds objects where the key is a
unique identifier for all the objects in a framework and these hold a content object
TraceRecord. This provides a very generic tracing structure, which can be applied to any
linked entities.

4 Knowledge capture and the reuse of designs
A desirable aspect of designing systems using a framework is to be able to trace and
potentially reuse stored design decisions. To achieve this requires a view of how design
decisions are made and recorded so that knowledge within a tested and validated design can
be stored, traced and potentially reused. We begin by discussing how designs can be
represented, followed by a consideration of how the ontology of a framework may be defined
and how this can utilise Problem Solving Methods (PSM’s).

4.1 Capturing the design process
The design process involves mappings from the design space specifications to a space of
devices or components [12]. This is conducted by means of a search within the space of
possible subassemblies of components for those that satisfy a set of constraints. To achieve a

8

solution the design problem solving process can be subdivided into a number of subtasks. A
task structure lays out the relationship between a task, methods for solving the task and
knowledge requirements for the methods [12]. A design task can be defined as [12]:

● a set of functions to be delivered by an artefact, including a set of constraints which
must be satisfied, and

● a relevant technology, that is a repertoire of components (assumed to be available)
and a vocabulary of relations between the components.

A design solution consists of a complete specification of a set of components and their
relations that together describe an artefact that delivers the required functionality and satisfies
the constraints. The most relevant object held by a component in relation to a design is the
functional object; as previously stated functions describe what an object does and this
represents the role of the relevant part of a structure. Therefore a framework using functional
representation satisfies the requirement that a design can be specified by a set of functions.
The constraints can be achieved using the goal object, also included within a framework
component. As we have stated: goals may also be described as design definitions in that a
designer may specify some limit or value that a function must reach [13]. The technology, or
the vocabulary of the system representation is already present in the form of an ontology
(described below). Central to the ontology are that the components, objects and associations
are a representation of the system design. This also implies that the system being represented
is either a conceptual or existing system being portrayed as the designer intends it to be, i.e.
the framework contains a representation of the design decisions that have gone into the
creation of the system.

4.2 Ontology
The purpose of an ontology is to capture domain knowledge in a generic way and provide a
commonly agreed understanding of a domain [14], which may be reused and shared across a
number of applications and groups. In practice an ontology is a hierarchically structured set of
terms for describing a domain that can be used as a foundation for a knowledge base [15].
This ontological requirement is met by the structure of the modelling framework as an
information system. Although we do not have a formal language for the framework, its
storage as an XML file defined by a DTD file fulfils this requirement. Swartout [15]
generalises that: “Large scale knowledge based systems are difficult and expensive to
construct. If we could share knowledge across systems, costs would be reduced. However,
because knowledge bases are typically constructed from scratch, each with their own
idiosyncratic structure, sharing is difficult. Recent research has focused on the use of
ontologies to promote sharing”. The use of XML with this application clearly solves the
issues of sharing information and compatibility with other applications [15] and is based on
the design of the underlying structure of the modelling framework.

4.3 Problem solving methods
The term Problem Solving Method (PSM) describes the reasoning process of a knowledge
based system (KBS) [14]. A PSM defines and encapsulates how to achieve the goal of a task.
The form of a PSM may differ between applications, however in general a PSM describes
which reasoning steps have to be performed and the type of domain knowledge needed to
perform a task. PSM’s provide the abstract procedures required for solving tasks. They are
arranged to utilise the available ontology which describes how a problem will be solved. In
other words, a PSM encapsulates a solution to a problem (that has already been defined and
solved) in the method ontology. A potential architecture for a PSM [16] is shown in Figure 7.

9

This shows that the heart of a PSM consists of a hierarchical structure of inference steps. Each
step can consist of solutions to sub-tasks which themselves are solved by (sub) PSM’s.
Referring to Figure 7, a PSM can be described by the following three parts [16]:

● functional specifications,

● operational specifications, and

● requirements.

problem solving
method

goal

functional
specification

requirements

domain knowledge

operational specification

inf1role1 inf2role2 role3

inferences

matches

is realised by

uses

satisfied by

Goal

Task/Function

Method

problem solving
method

goal

functional
specification

requirements

domain knowledge

operational specification

inf1role1 inf2role2 role3

inferences

matches

is realised by

uses

satisfied by

Goal

Task/Function

Method

Figure 7. An architecture for a Problem Solving Method [16].

The functional specifications of a PSM describe the tasks it can accomplish. Whether these
tasks are achieved or not is measured by an appropriate set of goals. In relation to the
modelling framework we have functional and goal objects, which are used to describe these
aspects and functionality can be tested against one or more goal objects. Both the functional
and goal objects within the framework can also be formed into a hierarchical structure from
other functional and goal objects. If we take a closer look at an atomic inference this may be
considered a singular reasoning step, which has input information supplied by an input role
and output information (based on whatever that reasoning step did) supplied to an output role.
An atomic inference (or reasoning step) can be represented by a component as used in the
modelling framework. As part of a system simulated by a number of interconnected
components a single component may be considered a reasoning step. The input and output
roles also form a similarity with the inputs and outputs from a component. Although
components do not exchange data, the objects they contain do and this data can be taken from
(or sent to) models or other objects within a framework. Combining components together then
replicates a hierarchy of inferences, which form the operational specification of a PSM.

4.4 Implementing design reuse with a framework
Designs represented by frameworks may be viewed as successful cases. If so, the information
they hold is useful when designing a new system from scratch. The basis of this is that once a
particular problem has been solved, this solution serves as a potential solution to a new

10

problem, which approximates the original problem. The normal approach to the storage of
PSM’s for design reuse is to arrange these in libraries and this raises a number of issues [14].
An alternate approach that we use is to regard the storage of frameworks as a virtual library of
PSM’s. This makes use of the tracing capabilities developed with this framework. If we
consider a system being described by an electronic store of a number of frameworks, then for
a given problem (defined by a set of functional requirements) we can search this store for
matches. The search takes place on the functional objects held by the frameworks. Once
found, the tracing capability is deployed to find all components (inference steps), which
contribute to this functionality. When this process is completed we have a set of matched
functional capabilities, that includes the contributing inferences. In other words a PSM, as
described by the architecture in Section 4.3. This then becomes a potential solution to a new
design problem.

5 Recording design rationale
The modelling framework representation has been designed and built as a means of
integrating modelling capability. Its primary purpose is to demonstrate (at the conceptual
stage of the design cycle) the way a system operates. Properties can be exchanged with other
model representations via editable links and it is this which helps to simulate a systems
capability. An extensive amount of other pieces of information can also be held within this
arrangement. This can be in the form of textual descriptions, links to external documentation,
unit data, version information and authorship as well as many other types. Two methods of
manipulating the data held by the framework have been added, that is bi-directional tracing
and a means of retrieving “tacit” knowledge stored in the frameworks. As described in
previous sections, this forms a traceable (and searchable) design knowledge store, as well as
an effective modelling database and repository. To make better use of traceability and
knowledge management, a more formal record of design is required in some standardised
form of documented design rationale.

To achieve this requires the capture of design rationale, which can be accomplished using
requirements management methods. Since the design process is heavily dependent on
experience it is this experience that the design rationale will have to capture. This will
therefore act as a record that can be used by other designers in the future or by inexperienced
designer as part of a learning process. Many of the ideas related to design rationale also
include traceability, since it is in the interest of designers to be able to trace the reasons why a
particular choice of design has been made. These approaches consider what should be
recorded in such a way that these types of traces can be implemented. A number of
approaches have been identified, including: a method based on rich traceability and one based
on requirements management. In each some form of documentation is associated with the
method. The first method also utilises a flowchart of design rationales between a users
requirement and what the requirements of the system are. The rationales simply plot the
designers’ path between these. This also exists in parallel with a large document base which
records all relevant information.

Currently we have not implemented a way of recording a flowchart of design rationales.
Essentially these items would be the system requirements. Therefore to implement such an
approach a flowchart facility would be needed. Another view is that goal objects, contained
by a component can be used to specify system requirements. The functional and behavioural
objects can contain the relevant information required to attain these goals. If the parts of a
represented system contain references to relevant documentation then it will be relatively easy
to extend the concept of this framework toward the documentation model and also the

11

responsibility model and change control. To investigate design rationale it is probably most
important to regard what a design engineer does and thinks. Research in this field has
identified how experienced designers think and record what they do, prior to arranging this in
the form of a design framework that novice designers could adhere to [17]. In theory this
helps novice designers to think and act more like experienced designers. The main aspects
exhibited by experienced designers are, they: will try to identify many more of the issues than
a novice designer, be aware of the reason why something was done, will refer to past designs
as starting points for new designs, question if something is worth pursuing, question the
validity of data, keep options open, be aware of trade-offs, and be aware of limitations. A
good record of design rationale will therefore have to be able to demonstrate these points and
this will give a definite direction for the progression of the MFR as a design tool in this area.
What an experienced designer has is experience and if a novice designer can be supplied with
the benefit of someone else’s experience then this will address this issue. This is therefore the
type of functionality that an extended MFR would be expected to fulfil.

6 Extending the range of application

Having looked at the basic modelling framework, created for the early design stage of
systems, this section considers the implications of extending these ideas further. Many aspects
of design now attempt to fully consider the entire lifecycle of a product. Addressing these
lifecycle issues can be beneficial from the point of view of increased design flexibility and
allow insight into the potential for increasing the upgradeability of designs. To help achieve
this, it is proposed that the approach we have used so far can be extended further into the
lifecycle of a product. This section considers some of the issues relevant to this and discusses
the implications.

6.1 Lifecycle issues
Historically, traditional designs have paid little attention to the later parts of the lifecycle. This
is understandable because such issues are not of immediate importance to most designers.
One exception to this is manufacturing, but other issues that are often related to maintenance
and end of life issues are frequently neglected. It is generally accepted that in future most
design engineers will need to consider all aspects of the design lifecycle. This is not just a
case of optimising a design or making a design more cost effective but means a more holistic
view of the cost of a product throughout its lifecycle, involving the total cost of ownership. In
future, aspects such as this will more often be a matter of legislation [18]. In general what is
required is an increase in the transparency to the designer of the:

 ● manufacturing costs

 ● maintenance costs, and

 ● termination or end of life (scrap) costs.

What we have developed so far can be extended such that a deeper insight into these lifecycle
issues can be achieved. Currently what we have is intended for use in the earliest stage in the
lifecycle, that is the conceptual design. To increase this further will require a more complete
understanding of the following stages: manufacturing, supportability, cost, implementation,
validation, and operational requirements. In effect this means all aspects of the lifecycle from
initial concept to final disposal. The result will be an increase in the overall transparency of
the product lifecycle. The benefits that would accrue from this approach would include:

12

improvement of product quality, concurrency of product and process phases and an overall
reduction in development time.

Figure 8. Design freedom in the early stage of design.

If we consider Figure 8 freedom starts from an

6.2 Prospects of an all encompassing design tool
g design rationale and making the

time into design process

100%

conceptual preliminary detailed

design freedom

objective is to increase
the design freedom
during the design process

early part of the lifecycle
modelling & simulation process

later parts of the lifecycle

m
an

uf
ac

tu
rin

g

im
pl

em
en

ta
tio

n

va
lid

at
io

n

op
er

at
io

na
l r

eq
ui

re
m

en
ts

…

, we see that in the initial design stage design
arbitrary 100%, but quickly falls as the design progresses into the detailed stages. The
objective of the modelling framework, is to lift this freedom thus allowing more flexibility in
design. Extension of the modelling framework into the later stages of the lifecycle will
produce an even greater flexibility into the design stage by increasing the transparency. Thus
allowing system designers more extended views of their design consequences.

One of the aspects discussed earlier was that of storin
knowledge accrued by the system designer available for reuse. Another view of this is that of
using the information system as a legacy utility. This is also linked to upgradeability which
requires flexibility in the design of a system. As we saw in Figure 8, an increase in flexibility
is one of the aims of the current approach.

Figure 9. Facilitating the upgradeability of a system design.

scope
of design

time into
design process

100%

design freedom

knowledge

implementing
design reuse

increases
knowledge

upgrading process

13

If we consider this further we can see that knowledge of a design is also linked to flexibility

nd knowledge levels. Often a design will be in

7 Conclusion and discussion
o help provide solutions to the ever growing problems

rogramming

 E., and Törne A., “Support for representation of functional behaviour

[2] d framework: A progress report”, 11th

[3] EE

[4] S.W., “Function-centered modeling of engineering systems

[5] resentation and reasoning about the

[6]

(Figure 9). That is the decrease in design freedom sees a corresponding increase in
knowledge. The overall aim is to lift these levels using tools such as the modelling
framework, and Figure 9 also indicates that by implementing design reuse we can lift the level
of knowledge at an earlier stage in the design.

Upgradeability is closely linked to flexibility a
operation for a number of years before an upgrade is considered. It is also extremely difficult
to design with upgradeability in mind, since technology will advance and the scope of any
future upgrade must be generally unknown to the designer. Therefore by increasing the levels
of design freedom and knowledge this will give greater scope to the issue of upgradeability.
This will also be facilitated by using the modelling framework as a fully integrated
information system, which can track and monitor changes as well as giving some indication
of the knock-on effects as far as later lifecycle issues are concerned.

Modelling frameworks are being used t
of designing complex systems. We have presented our approach to this in the form of a basic
modelling framework, which can represent a wide variety of computer based models, trace
properties produced by those models and be used as a basis for design reuse. This is in a form
designers of systems can use to view the relevant systems information they need.

The design of the modelling framework application (written using the Java p
language) has been modelled using an object oriented approach. Designing the framework
using UML has provided a flexible approach that can be easily adapted and extended into
other areas of design use. This flexibility is important to extending the current version to
enable it to capture and record design rationale. More importantly this versatility can be
utilised to expand use of the modelling framework into areas relevant to the product lifecycle.
The view of the lifecycle issues discussed with respect to the capabilities of our approach with
frameworks, show that the scope exists for such expansions. When implemented, this will
give a more transparent view of the lifecycle to the designer and will help enable future
designs to be made with upgradeability in mind.

References
[1] Herzog

specifications in AP-233”, 7th International Conference and Workshop on Engineering
of Computer Based Systems, pp 351-358, 2000.

Salustri F., “Function modelling for an integrate
Florida Artificial Intelligence Research Symposium, pp 339-343, May 17-20, 1998.

Keuneke A., “Device representation: the significance of functional knowledge”, IE
Expert, April 1991: 22-5.

Modarres M., and Cheon
using goal tree-success tree technique and functional primitives”, Reliability
Engineering and System Safety 64 (1999) 181-200.

Pegah M., Sticklen J., and Bond W., “Functional rep
F/A-18 aircraft fuel system”, IEEE Expert, Vol. 8, No. 2, April 1993.

Sage P., “Systems engineering”, J Wiley, 1992.

14

[7] Rumbaugh J., Blaha M., Premerlani W., Eddy F., and Lorensen W., “Object-oriented

[8] ility for dependable

[9] d A., “Traceability for the development and assessment

[10] approach to

[11] ML: A foundation for model-driven

[12] olving: a task analysis. American Association for

[13] P., and Whittle S., “Use of modelling frameworks in the

[14] , “Overview of knowledge sharing and reuse

[15] use of large-scale

[16] Assumptions of problem-solving

[17] Identifying and supporting knowledge needs of novice

[18] n

Corresponding author:
John Dalton

Design Centre
uilding

NE1 7RU

 261 6059
k

modeling and design”, Prentice- Hall, 1991.

Pearson S., and Saeed A., “Information structures for traceab
avionic systems”, Technical Report number 567 Department of Computing Science,
University of Newcastle, 1997.

Pearson S., Riddle S., and Saee
of safe avionic systems” Proc. 8th Int. Symposium International Council on Systems
Engineering (INCOSE 98), pp 445-452, Vancouver BC. Canada, Jul 1998.

Dalton J.A., Norman P.W., Whittle S., and Rajabally T.E., “Using an MDA
model traceability within a modelling framework”, Metamodelling for MDA, Kings
Manor, York, England, November 24-25 2003.

Mellor S.J., and Balcer M.J., “Executable U
architecture”, Addison-Wesley, 2002.

Chandrasekaran B., “Design problem s
Artificial Intelligence”, 1990.

Dalton J.A., Norman P.W., Sen
design of complex engineering systems”, Engineering Design Conference (EDC 02),
King's College, London, UK, 2002.

Pérez A.G., and Benjamins V.R.
components: ontologies and problem solving methods”, The IJCAI-99 workshop on
ontologies and PSM’s (KRR5) Stockholm, Sweden, August 2,1999.

Swartout B., Patil R., Knight K., and Russ T., “Toward distributed
ontologies”, 10th Knowledge Acquisition for Knowledge Based Systems Workshop
(KAW 96), Nov 9-14, Banff, Alberta, Canada, 1996.

Benjamins V.R., Fensel D., and Straatman R., “
methods and their role in knowledge engineering”, ECAI 96. 12th European Conference
on Artificial Intelligence, 1996.

Ahmed S., and Wallace K.M., ”
designers within the aerospace industry”, Journal of Engineering Design, 15, 3, 2004.

Jarratt T.A.W., Eckert C.M., Weeks R., and Clarkson P.J., “Environmental legislatio
as a driver of design”, International Conference on Engineering Design, ICED 03,
Stockholm, August 19-21, 2003.

Newcastle Engineering
Stephenson B
University of Newcastle
Newcastle upon Tyne
United Kingdom
Tel. Int +44(0)191 222 8556
Fax Int. +44(0)191
E-mail: John.Dalton@ncl.ac.u
URL: www.edc.ncl.ac.uk

15

	1 Introduction
	2 Modelling framework
	3 Traceability
	4 Knowledge capture and the reuse of designs
	5 Recording design rationale

	6 Extending the range of application
	7 Conclusion and discussion

